IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000 121

Optimal Prefix Codes for Sources with Two-Sided
Geometric Distributions
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Abstract—A complete characterization of optimal prefix codes turing the two adjacent modes often observed in empirical con-
for off-centered, two-sided geometric distributions of the integers  text-dependent histograms of prediction errors. More specifi-

is presented. These distributions are often encountered in Iosslessca”y in this paper we consider integer distributions of the form
image compression applications, as probabilistic models for image ’

prediction residuals. The family of optimal codes described is an _ |z-+d| _ .
extension of the Golomb codes, which are optimal for one-sided Po,a)(x) = C0, d)f ’ z =0, £1, £2, (1)
geometric dIStr‘Ibl‘JtlonS. ‘The new family of podgs §||0WS for en- where0 < 6 < 1,0 < d < 1/2, andC(6, d) is a normalization
coding of prediction residuals at a complexity similar to that of fact . b

Golomb codes, without recourse to the heuristic approximations actor given by

frequently used when modifying a code designed for nonnegative 1-¢
integers so as to apply to the encoding of any integer. Optimal de- cl,d)= =5 (2)
cision rules for choosing among a lower complexity subset of the 6 +0

optimal codes, given the distribution parameters, are also investi- The parametef determines the rate of decay of the distribution,
?uaht‘?gﬁﬁgdoﬁchgpﬁggl"ggS‘SJri‘sdg';ﬁ)r’lgzghe subsetwith respecttothe \\ g 7 determines the offset of its center. The restriction on the

range ofd is justified through straightforward application of ap-
Index Terms—Exponential distribution, geometric distribution,  propriate translations and reflections of the real line. In practice,
Soor:;)p:?gs;gﬂeZ’reHdliJch:ﬁr;eg?ddueél infinite alphabet, lossless image yo it interval containing the center of the distribution can be
' ' located by a suitable adaptive predictor with an error feedback

loop [3], [4]. The TSGD centered at zero corresponds 00,
|. INTRODUCTION and whend = 1/2, Py 4 is a bimodal distribution with equal

REDICTIVE coding techniques [1] have become ver{€2Ks at-1 and0.:

widespread in lossless image compression, due to thejrl "¢ TSGD model is attractive in practical context-con-
ned image compression schemes since the distribution

usefulness in capturing expected relations (e.g., smoothnéggf

between adjacent pixels. It has been observed [2] that a gdBoeaCh context is determir_1ed by just two parameterg (rat.e
probabilistic model for image prediction errors is given by decay and offset), despite the source alphabet being, in

a two-sided geometric distributioifSGD) centered at zero. principle, infinite (and, in practice, finite but quite large). This
Namely, the probability of an integer error valueis pro- allows for the utilization of a fairly large number of contexts,
' twhile keeping the total number of parameters in the system at

portional to8!*!, where# € (0, 1) is a scalar parameter tha o X ) X ;
aiﬁnoderate level. This is particularly important in an adaptive

controls the two-sided exponential decay rate. We assume®in - . r
the sequel that prediction errors can take on any integer valﬁﬁft'ng' Where the statistics are “learned frolm the data, and the
de length includesmodel costerm proportional to the total

an assumption that, in the context of exponential distributiorfs

is well approximated in practice by the use of Iarge—symbglumber of free statistical parameters [7]. Adaptive strategies
alphabets (e.g., 8 bits per pixel). for TSGD'’s based on symbol-by-symbol prefix codes, as well

Although the centered TSGD is an appropriate model i8S universal schemes based on arithmetic coding, are discussed
memoryless image compression schemes, it has been obseW/éBfe companion paper [8]. .
[3], [4] that prediction errors iontext-basegchemes [3]-[6] Itis _read|ly verified that the TSGD (1) has a finite entropy
exhibit a dc offset, and a more appropriate model is given 5§t 9iven by

anoff-centeredl SGD. This model is also useful for better cap- h(#)
H(, d) = T—¢

+ 1(p) 3)
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is the probability that a random variable drawn according to tled admit efficient approximation in an adaptive setting, which
distribution (1) be nonnegative. By [9], the finitenesdbfd, d) is explored in more detail in [8]. Moreover, we bound the rel-
guarantees that a minimum expected-length prefix code exiative redundancy of the reduced family with respect to the full
and can be obtained by a sequence of Huffman-like procedufasily of optimal codes, thus providing formal proof of a fact
(however, this general result is nonconstructive). Infinite ethat had been observed in the literature (see [16], and [13] for
tropy distributions are addressed in [10]. OSGD’s).
The main result of this paper is a complete characterization

of optimal prefix codes for the TSGD (1). The family of optimal Il. OPTIMAL PrEFIX CODES FORTSGD’s
codes will be an extension of tié@&lomb code§l 1], which are . . o

In this section, we develop a complete characterization of

optimal forone-sidedyeometric distributions (OSGD'’s) of non- . um expected-length prefix codes for the TSGD (1). To

negative integers [12]. The optimal codes forthe TSGD preserye end, we will partition the parameter space(6fd), 0 <

the simplicity of the Golomb code, which enables simple caICLé-< 1,0 < d < 1/2, into regions, each region corresponding

lation of the codeword of every given source symbol, tho#é:)ia variant of a basic code construction device. In the next few

recourse to the storage of code tables for large alphabets. S it X -
: . . . efinitions and lemmas, we describe the partition and some of
property makes the family attractive for use in adaptive scheml?s

[3], [13], [14] since it avoids the need to dynamically updates basic propernes. ) AL
code tables as in traditional adaptive Huffman coding (see, e.g. 70" @ given value of, define = min{d, 1/2 - d}. Clearly,
[15]). Thus the economy of parameters of the TSGD is reflect@g < 1/4. For every positive integett and every pair of model
in the simplicity of the codes, and only a small number of varParametersé, d), define the functions
ables need to be updated, and simple rules applied, to adap-
tively select a code for each sample. The optimal family of prefix . _ p2e—1 —25 —1 _
codes derived here enables the adaptive strategies for the TSGD rolf, 6, d) = 07 (1+077) + 0 1 ®)
studied in [8] and also in [16].

Previous approaches to finding efficient prefix codes for
TSGD's have focused mainly on the case- 0. A popular ap-
proach [13] is to encode an integer by applying a Golomb code r(l, 0, d) = 6211 +6%)+6° -1 (6)
to its index in the sequendg —1, +1, —2, +2, -3, +3,---.
Notice that withd < 1/2, this “folding” of the negative values
into the positive ones ranks the integers in nonincreasing
probability order. A different heuristic approach, based on
encoding the absolute value with a Golomb code and appendinr%
a sign bit for nonzero values, was proposed in [17]. As shovi
in Section Il, these strategies are subqptimal for some ranges of ra(f, 0, d) = 6°(1 + 62) — 1. 8)
the parameter§, d), even when restricted to the link= 0.
Some partial answers to the question of optimal codes for emma 1:

d = 0 can al'so be found in [18],' ) i) Given£ > 1 andd, ro has a unique roofy(¢, d) €
The remainder of the paper is organized as follows: In Sec- (0, 1). Similarly, for £ > 1, 1, 2, andrs have unique

tion_II, we present our mgin re_sult, characterizing t_he optimal roots in(0, 1), denoted, respectivelg, (¢, d), 62(¢, d),
prefix code for a TSGD given its parametérsd. As it turns andés(£, d).

out, the two-sided nature of the distribution, and the two-dimen- ii) For ¢ e ’(0 1) and0 < i < 3, we haved < 6;(¢, d) if
sionality of the parameter space add surprising complexity to the and only if’n(f 0 d)_< 0. B
characterization, as compared to the one-sided case. The pararﬂD booe
eter space of6, d) will be divided into four types of regions,

with a different optimal code construction applying to each type.
The codes for two of the region types are, in general, fairly non- Oo(4, d) <61(¢, d) <O2(¢, d) <Bs(£, d) < Bo(£+1, d)
intuitive variants of Golomb codes, which had not been previ-

ously described in the literature. The section includes a general

discussion of the method of proof of optimality, and insight into where we definéo(1, d) = 0. Moreover, equality be-
the origins of the fairly intricate partition of th@, d) plane. tweend, (£, d) and62(¢, d), and betweerd3(¢, d) and
Once the codes and regions are appropriately “guessed,” the ac- 6o(£ + 1, d) occurs only atl = 1/4, while equality be-
tual proof, which uses a technique from [12], involves relatively ~ tweenfy (¢, d) andfz(¢, d) occurs only atl € {0, 1/2}.
tedious calculations, and is deferred to the Appendix. In Sec-  Therefore (£, d) < 6o(£ + 1, d).

tion Il we derive the average code lengths attained by the op- Proof: i) The existence and uniqueness of a root
timal codes over the parameter spacétfd), and investigate 6;(¢, d) € (0,1) of r;, 0 < ¢ < 3, is established by ob-
their redundancy. Finally, in Section IV, we consider a simplserving that, for fixed/ and d in the appropriate ranges;
fied, suboptimal subset of codes used in practice [3], [13]. Vi& a continuous function o in (0, 1), »;(¢, 0,d) — -1
present optimal criteria to choose among these codes for gias¥ — 07, r;(¢, 6, d) has a positive limit a¥ — 17, and
values ofd andd. These criteria extend results in [13] and [14]9r, /88 > 0, 8§ € (0, 1). The monotonicity ofr; also yields

ro(l, 6, d) = 8°(14+672) — 1 (7

For ¢ > 1, we have
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part i) of the lemma. Notice thaty(1, 6, d) — 0 asf — 07, <ol d) < 61(4, d)

justifying the definition ofdy(1, d) = 0. <Ol d) < Os(4,d) < - < 1.
As for part iii), we first observe that B - - )

. . _ 2017926 =26 ¢ pl—1
ri(f, 6, d)=ro(l, 6, d) = 077 (F7 —07)+(6'=6"") < 0 Moreover, itis easy to see from the definitiondgfand from (5)

thatfo(¢, d) — 1 asf — oc.

where the last inequality follows from< 1, § > 0, and¢ > 1. The different intervals defined by the boundaed, d) be-
Thus due to the strict monotonicity of andr, we must have come two-dimensional regions once the dependence &n
8oL, d) < 61(¢, d). We now compard, (¢, d) with 6; (¢, d). fcaken in_to account. Each pair of.model parametérs?) falls
For clutter reduction, we omit the argumeris d) of the ; N @ region characterized by an integer paramétéy d), and
when they are clear from the context. It follows from the def?y one of four subintervals associated withand determined
nition of @, that by#;(¢, d), i =0, 1, 2, 3. By Lemma 1, part ii), the parameter

£(6, d) is given by
1

0 = —— .
2T 1467

£0,d) = I?;Lf({fh’o(f, 6, d) > 0}. (10)
Substitutingd, for 4 in definition (6), we obtain B

Sincelimy .., 80(¢, d) = 1, £(6, d) is well defined for alld

(0 By d) = 6, 14628 1 _ andd in the range of interest. In fact(6, d) can be explicitly
71(7 25 )— Y 2( 2)+ Y . / . . .
(14657 146, computed by setting = #° and solving the quadratic equation
61 .
=2——=>
1+9§ 22(1+9—2(5)+2_9:0

where the last inequality follows froth< 1/4. Thus by partii),
6:(¢, d) > 61(¢, d), with equality occurring atl = § = 1/4.
Next, definitions (7) and (8) implyx(¢, 6, d) > r3(¢, 8, d)
for 6 € (0, 1). Thus we must havé, < 65 by parts i) and ii) log %o
of the lemma. Equality occurs dt€ {0, 1/2}, in which case 49, d) = LoggJ :
6 =0, andr(¢, 0, d) = r3(¢, 6, d). Also, we have

which has a unique solutior in the open interval0, 1). Then

For ease of reference, we label the regions defined by the

6t = 1 - partition in (9), for each value df, as follows:
1+63° Region I: 6o(¢, d) < 6 < 6,(¢, d)
RegionIl: 6:(¢, d) < 6 < 6:2(4, d), d<1/4
Substitutings for @ in the expression foty(¢+1, 6, d) derived ~ Regionll: 61(£, d) < 6 < 6>(4, d), d>1/4
from definition (5), we obtain Region IIl: 6(¢, d) < 6 < 83(¢, d)
Region IV: 63(¢4, d) < 6 < 6o(¢+1,d), d<1/4
Region IV: 634, d) < 0 < 6p(¢+1,d), d>1/4.
ro(l+1, 63, d) = L (14632 + 1 We defineRegion lllas the union of Regions’'|Illl’, and V.
(1+63)? 1+63° The various two-dimensional regions foe= 1, 2 are illustrated
03720 — 63° in Fig. 1. Notice the symmetry arounb= 1/4.
- W = We now turn to the basic building blocks of our code con-

struction. For any integer, define

Thusés(¢, d) < 8y(£+ 1, d), with equality atd = § = 1/4.
O 2z, x>0
. M(x) = 11
It follows from Lemma 1 that, for a given value éfthe func- 2lz| -1, z<0.
tionsr; define a partition of the intervéD, 1) into subintervals,

with boundaries given by the valuég/, d), ordered as follows: For nonnegative integets the inverse functionu(i) of M is

given by
0="00(1, d) < 6:(1, d) < (1, d) < 65(1, d) ‘ i
o, d) < 6,02 ) < - i) = -1 [ 5]
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0,(3,d)
£=2, Region [V

£=2, Region I1
6,2,d)

061

8,2,4)
£=l,RegionlV. " e £=1, Region IV'

i T

£=1, Region I

04+ £=1, Region IT'

8,(Ld)

02+
£=1,Region I

Fig. 1. Parameter regions. Region Il is defined as the union of Regigriiljand IV.

Since0 < d < 1/2, the integers are ranked in decreasing prob- We are now ready to state the main result of the paper.

ability order by Theorem 1: Let z denote an integer-valued random variable

distributed according to the TSGD (1) for a given pair of model

Plo,0y(0) = Plo,ay(—1) = Fo,q)(1) 2 parametergf), d), 0 < 6 <1,0 < d < 2 and lett = £(¢, d)
> p _o9y> P N> ... (12) as defined in (10). Then, an optimal prefix code fois con-
2 Po,o(=2) 2 Ro,)(2) 2 -+ structed as follows:
Region I; If

ThusM () is the index ofz in the probability ranking, starting
with index0 and with ties, if any, broken according to the order
in (12). Conversely,(¢) is the symbol with théth highest prob-
ability.

For any positive integet, let &1, denote the Golomb code encoder usingGa, 1 (M (z)).
[11] of order L, which encodes a nonnegative integeinto a Region II: If d < 1/4 and
binary codeword7;,(u) consisting of two parts: a) aadjusted
binary representation of/ = wmod L, using |log L| bits if
o' < 20 L1 _ [ or [log L] bits otherwise, and b) anary 61(4, d) < 6 <6:(¢, d)
representation of = |u/L], usingg + 1 bits. Here,amod b
denotes the least nonnegative residue ofod b. We will de- ] )
note byG'z,(u)b the binary string resulting from appending ~ €ncode|z| using the codeG(x.(|x])), where the mapping
{0, 1} to G, (w). x¢(|z]) is defined below, and append a sign bit whenever

Bo(, d) < 6 < 6.(¢, d)
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x # 0. Letr be the integer satisfying™—! < ¢ < 27, and let use asubfamilyof the Golomb codes, for which the code pa-

s = 2" — L. Define rameter is a power of two, making the encoding and decoding
procedures extremely simple. This subfamily is further inves-
tigated in Section IV. A different heuristic approach, based on

(jz]) = g’ IxI i 0 Zggs ;é 5 encoding the absolute value with a Golomb code and appending
XAlr) = |a7:| oa;hgrvf/ise 5 a sign bit for nonzero values, was proposed in [17]. Theorem

1 shows that this heuristic (which always produces symmetric
codes) is optimal only in Region Il, and then only whéis a
Region Ill: If d < 1/4 and power of two, in which casg,(-) is the identity mapping.
Method of the Proof:In the proof of Theorem 1, we will
borrow the concept of eeduced sourceused in [12] to prove
B2(¢, d) < 6 < 65(¢, d) the optimality of Golomb codes for OSGD’s. Reduced sources
were also applied in [19] to construct optimal prefix codes for
distributions whose tails decay faster than a geometric rate with
ord > 1/4 and ratio (v/5—1)/2, e.g., Poisson distributions. The concept is gen-
eralized in [9] and shown to be applicable to all finite entropy
distributions of the integers, albeit in a nonconstructive fashion.
Here, for each of the regions defined {@r <), and each in-
tegerm > 0, we will define a finitemth-order reduced source
encoder usingGao(M(z)). Ri = as a multiset containing the fir8tn — b probabilities in
Region IV: If d < 1/4 and the ranking (12), wheré € {0, 1} depends on the region, and
a finite set ofsuper-symbabrobabilities, some of which repre-
sent infinite “tails” of the remaining integers. The indExalso
03(¢,d) <8 <6o(L+1,d) expresses region dependence, and it satigfies 2¢ — 1 for
Region | andL = 2¢ otherwise, wheré = ¢(8, d).
] ) ) ) ) We will use Huffman’s algorithm to construct an optimal
defines as in Region II, encoder| using./;(||) defined below, prefix code forR .., and will then letn tend to infinity, thus

91(& d) <40 S 90(£+ 17 d)

and append a sign bit whenever~ 0. obtaining a code for the integers. The code length assigned by
our construction to an arbitrary integerwill be the one as-
G|z - 1), |z > s signed by the optimal prefix code f& , ,,, for the Ieastm
Ge(|z)), 1< |z < s such tham — b > M (x). By the nature of the construction,
Je(|z) = (00 =0 L' this code length will remain unchanged for larger valueswof
G[(O)lz |z = s. The formal argument validating the limiting step, and why it

yields an optimal prefix code for the original infinite source, is
given in [12] and it carries to our construction. The exact def-
inition of the reduced sources used, and the way the Huffman
Discussion construction on a reduced source proceeds, will vary according
to the region the parameter pé&#t, d) falls into, thus leading to
Relation to Prior Work: Theorem 1 includes the main resuldifferent code structures for the different regions.
of [12] as a special case wheh = 1/4. In this case, the It turns out that the two-sided nature of the distribution, and
distribution (1), after reordering of the integers in decreasirige two dimensionality of the parameter space add surprising
probability order, is equivalent to an OSGD with parameteomplexity to the characterization, as compared to the one-sided
¢ = /6. As shown in [12], the optimality transition for suchcase. This complexity is evidenced by the variety of regions and
a distribution between thd.th-order Golomb code and thecodesin Theorem 1 (in fact, much of the intricate structure exists
L + 1st, L > 1, occurs at the (unique) value € (0, 1) such even in the simpler, one-dimensional case- 0). The codes
thatgr(¢) = ¢"+¢"~1 —1=0. It can readily be verified that for Regions Il and IV had not been described in the literature,
ro(¢, %, 1/4) = 0 if and only if gos—1(¢p) = 0, and except for the special case mentioned above in connection with
r1(¢, $*, 1/4) = 0if and only if goe(¢) = 0, £ > 1. the heuristic in [17]. Examples of optimal code trees for Regions
Notice that the optimal codes for Regions | and Ill asym- 1l and IV, with £ = 3 (s = 1), are shown in Fig. 2, together
metrig in that they assign different code lengthsit@nd —x  with the tree ofGG3 for ease of reference. In either region, the
for some values of. In contrast, the codes for Regions Il andree is a fairly nonintuitive transformation of the one resulting
IV are symmetric. The mapping (11) was first employed in [13tom applyingGs to || and appending a sign bit when 0.
to encode TSGD'’s centered at zero by applying a Golomb colhethe case of Region I, the nodes for the symband the
to M(z). Theorem 1 shows that this strategy (which was algmir +s = +1 (regarded as one symbol) have switched places
used in [3] and always produces asymmetric codes) is optimalative to the locations di and1, respectively, in the tree for
for values off andd corresponding to Regions | and Ill, but isG3. This is due to the action ofs. In the case of Region 1V,
not so for Regions Il and IV. In fact, both [3] and [13] actuallythe original node fof in GG has been split to accommoddte
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Region II Region IV Golomb code G,

Fig. 2. Coding trees for Regions Il and I¥/,= 3 (s = 1).

and=1, and all other nodes have been “promoted,” i.e., the paif Region Ill. This is due to the fact that the optimal code is a
=+7 is at the location ofi—1 in Gz, j > 1. This corresponds to Golomb code of even parameter, and that every integer belongs
the application of/3(|x|), noting that in this case, there are ndo a natural pair whed > 1/4. Thus while the three subre-
integers|z| in the rangel < |z| < s. gions comprising Region Il for a givefiadmit the same op-

We now offer some insight into how the various paramet¢éimal prefix code, the iterations leading to the optimal length
regions (and hence the above mentioned complexity) arisistribution, and their underlying trees are different: the tree
The functionsro(4, €, d) and (¢, 8, d) determine the pos- constructed in Regions'land IV corresponds to that af,
itive integer parametel, characterizing a basic property ofbut with each leaf split into two, while the tree for Regiori Il
Golomb-type codes: Starting from some codeword length corresponds directly to that @¥,,, L = 2¢. The two tree con-
the code contains exactly codewords of lengtth + ¢ for all ~ figurations are illustrated in Fig. 3, far= 1. A discussion of
1 > 0 (for the codes of Theorem 1 is at mosth + 2, where the number of different coding trees that can be optimal for a
A is the minimal codeword length). The lines(4, 8, d) = 0 given distribution, including some infinite alphabet cases, can
mark the transition from regions with = 2¢ — 1 to regions be found in [20].
with L = 2¢, ¢ > 1, while the linesrq(¢, 6, d) = 0 mark the ~ The proof of Theorem 1 is deferred to the Appendix.
transition fromL = 2¢ to L = 2¢/+ 1. The role of the functions
ro andry is, therefore, analogous to that of the functign I1l. CODE LENGTH AND REDUNDANCY
determining the code transitions in [12].

The linesrz (¢, 8, d) = 0andrs(¢, 6, d) = 0, inturn, deter-
mine how the optimal code construction handles “natural pair
of symbols in regions witl. = 2¢. These are pairs of symbols
that are close in probability, i.e{x, —«} ford < 1/4 and
{z—1, —z}ford > 1/4, wherex is a positive integer. Focusing
firston the casé < 1/4, and assuming is sufficiently large,
we observe that if the optimal code tree construction merge
and—z (i.e., makes them sibling leaves), then by the constrai
imposed by-y andr; in determining the value df, the resulting
_pr(_)babilityo_ = P, q)(x) + P, q(—=) must fall in the prox- is optimal,
e g5 o by Lemma 2:Let £ be an abiary posiive iger,and et
by whethers is to theleft (Region 1), inside (Region III'), or Ax,(0, ) denote the average code length for a code of Type

. . - L X (X =1, 11, 11, V), for the given value of#, when applied to
to theright (Re_glon V) of the_mterval. When falls inside the a TSGD with parameter, d). Let » ands be defined as in
interval, merging ofr and—z in the optimal tree construction

_ Th 1,and letf = d2"1. Then, we h
would prevent the translated natural pair — 4, —(x — £)} eorem 2, an o en, We have

We refer to the prefix codes defined in Theorem 1 for Re-
jons -1V as codes ofypes -1V respectively. The expected
ode lengths for these codes when applied to the TSGD (1) are

derived from their definitions in Theorem 1, and from the length
distribution of the Golomb code, which follows directly from its
definition. The resulting average code lengths, summarized in
the following lemma, are computed by applying straightforward
eometric sums, and derived sums of the general fpipx’.

tice that the expected code lengths apply to all allowable pa-

rameter value&, d), and not just to the region for which a code

from merging. Because of the self-similar character of the Are(0, d) =1+ |log(2¢ — 1)| + %
distribution, this condition applies to all, and it results, in o
general, in a construction that does not merge natural pairs (e.g., (1= Po,a)(0) +6°)
the asymmetric codes of Region’)lIOn the other hand, when A e(0, d) =1+ [log#] + (1 — P(&d)(()))eS'
o falls outside the interval between the probabilities of a natural gt-1
pair, these pairs tend to merge, resulting in the symmetric codes < + 1_—94>
of Regions Il and IV. .

A similar situation exists fod > 1/4, but with a twist. There, A (8, d) =1 + [log(2¢0)] + —
again, the optimal construction will not merge natural pairs in _ 1-6 L
Region IIf, and it will in Regions 11 and V. Nevertheless, re- Ay, (6, d) =2+ [log£] + (1 — Fe,4)(0))6°~

gardless of whether they are merged or not, symbols in a nat- < g+t )

ural pair end up with equal code lengths in the three subregions 1+ 1—6¢
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Regions IT', IV' Region 1T’

Fig. 3. Coding trees for Region Ilf, = 1.
R(6,d)
0.16

0.14 A
0.12 1

0.2 03 0.4 0.5 0.6 0.7 0.8 09 1

Fig. 4. Redundancy of optimal prefix codes (in bits/symbol).

Let A\,¢(6, d) denote the expected code length for the ops indeed dyadic for the mentioned two points in the parameter
timal prefix code corresponding to the parametgrsd). De- space, and nowhere else.
fine theredundancyof the_famlly of optimal prefix codes as Lemma 3: The TSGD (1) is dyadic if and only if

R(8, d) = Aope(6, d) — H(H, d)

whereH (6, d) is the entropy rate given in (3). 11 11

Fig. 4 plots the redundancy as a functiorfdér d = 0, 1/4, (0, d) € {(5’ 5) ' <Z’ Z)} :
and 1/2, respectively. The region nedér = 0 is omitted, to
allow appropriate scaling of the rest of the plot. The redundancy Proof: Assume the distribution is dyadic. Then, all ratios
is highest in that region, and its behavior is as follows: Whesetween symbol probabilities are powers of two. In particular,
d < 1/2, the entropy rate tends to zerotas- 0, and the ex- we can writed = 27* and#?¢ = 2~V for integers0 < v <
pected code length tends to 1 bit/symbol. Whike: 1/2, the 4, where at least one of the inequalities is strict. Consider the
entropy rate tends to one és— 0, since the TSGD degener-probability Py, 4(0). We have
ates, in the limit, into a bimodal distribution with all the prob-

ability mass distributed equally between= 0 andz = —1. 1-0 1_9—u

The expected code length of the optimal code, in turn, tends to P(a,d)(o) = C(9, d)ed = gi—2d T1 = u—u )

1.5 bits/symbol, yielding a limit of 0.5 bit/symbol for the redun- Cgu

dancy a9? approaches zero. However, for valuesfof 0.5, 22_LW-

which are most likely to occur in practical applications, teke

ativeredundancy remains below 3%. Clearly, this probability is dyadic if and only {24—1) /(2“~"+
It is apparent from the plots in Fig. 4 that the reduny)isa power of two, which holds if and only if either= v = 1

dancy vanishes at the poin@,d) = (1/2,1/2) and or, = 2 andv = 1. These cases correspond(th d) =

(6, d) = (1/4,1/4). Itis well known that the redundancy of ( /5 1 /9y and (6, d) = (1/4, 1/4), respectively. It is readily
the Huffman code for a discrete distribution is zero if and onlyerified that the corresponding dyadic distributions are
if the distribution isdyadig i.e., all its symbol probabilities are

powers of two. The following lemma shows that the TSGD (1) Pro, () = o—le+1/2|-3/2
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and when dealing witl,. Lemma 4 addresses this case by denoting
P ay(z) = o—(M(xz)+1) Gi(x) = Go(—x—1), and implementing the check on the range
' of d as part of the classification procedure. Also, the classifica-

respectively. The first distribution corresponds to either tree fien W.'” be more readily dgscrlbed by qhanglng variables, and
Fig. 3, while the second corresponds to the tree for a unary cogiPPINg the parameter pd#, d) to a pair(S, p), where
O

The plots of Fig. 4 are analogous to the redundancy plot in 5=06/(1-0) (13)
[12] for the OSGD case. In fact, the plot fér= 1/4 is equiva-
lent to that in [12], except for the fact that a point with abscissaandp is given in (4). We recall that is the probability of an in-
in the figure corresponds to one with abscis4ain [12]. Fur- tegerz distributed according &, 4 being nonnegative. With
thermore, the dependency of the redundancyl anishes as ¢ € (0, 1) andd € [0, 1], the range ofS is (0, >), and
6 approacheg. This is evidenced by the three curves merginghe range of is [#/(146), 1/(146)]. Also, d = 1/2 corre-
in the figure, and can be formally verified by inspecting the exsponds top = 1/2, and the mapping — 1—d corresponds
pression for the entropy in (3) and the code lengths in Lemmat@.p — 1—p. In adaptive schemes, the parametgrmsndp are
Therefore, the oscillatory pattern of the redundancy iearl, a more natural choice for characterizing the TSGD, as they are
characterized in [12] for Golomb codes, applies to the codesestimated by very simple functions of the observed data [3], [8],
Theorem 1 as well. [16].

Lemma 4: Consider an integer-valued random variable with
probability distributionF,, 4 for a given pair of model param-
eters(d, d),0 < 8 < 1,0 < d < 1. Let(S, p) be the trans-

The family of optimal prefix codes presented in Section formed parameters derived according to (13) and (4), and define
makes use of Golomb codes of arbitrary order> 1. Prac- 2 (/5.4 1)/2. The following decision rules minimize the ex-
tlcal_ _schemes such as [3] and [13] have b_ee_n restricted to SHthed codeword length over the subfamily of codes
families based on Golomb codes for whi¢his a power of :

. X . a) If S < ¢, compareS, p, andl — p. If S is largest, choose

two, which yield clear complexity advantages already recog- B X

. ; . : codegG; . Otherwise, ifp is largest, choosé,. Otherwise,
nized in [11]. Given an integer paramete> 0, the codeGs- choosed;
encodes a nonnegative integein two parts: ther least sig- : ] .
nificant bits ofu, followed by the number formed by the re- b) If 57> ¢, choose cod@,+1, r = 1 provided that
maining higher order bits af, in unary representation. The code 1 1
length isr+-1+ [u/2"] bits. Thus with this restriction, the divi- e <9 K e

; . o : P2 1 P2 —1
sion by an arbitrary positive integdr, necessary for encoding
u with G, and deemed too complex in some applications, is _
trivialized. Furthermore, the modified binary encoding of the  Proof: Let A.(6, d) denote the average code length for
remainder: mod L becomes an identity mapping, instead of §0deg., r > 0, and let\(¢, d) denote the average code length
nontrivial, variable-length mapping in the general case. Finalfgr codegy. It follows from Lemma 2 applied to the code of
as shown in [3], [16], and the companion paper [8], codes fdyPe | and? = 1, and from the definitions of, p, and P, 4
which L = 2" admit very simple yet accurate online adaptahat
tion strategies, and, as we shall see in the sequel, the complexity
benefits obtained from the restriction of the code family have a
rather modest cost in code length.

Motivated by these considerations, we next study the fam

IV. Low-CoMPLEXITY CODE SUBFAMILIES

(14)

o8, d) = Ng(6, 1 —d) = 2+ 25 — p. (15)

iye other codes in the subfamily under consideration-(0)

C of prefix codes utilized in [3] and [13]. L&t,., > 0, denote Ef’f Type I.”’ so we apply Lemma 2 for that type, with=

a code that maps an arbitrary integeto G- (M (z)). Then, 2", to obtain

the family of interest is defined a = {G,. | » > 0}. Notice ot

thatG, is the code of Type | witlf = 1, while for» > 1, G, is Ar(8, d) = XIIM(Q7 d)=7r+1+ — (16)

the code of Type Ill witlY = 271, ThusC is the subfamily of 1-6

asymmetric codes of Section Il for which the parameter of the ) _ )

associated Golomb code is a power of two. In pamcularf;l(e, d) = 2 + S, which must be compared to
Lemma 4 below presents optimal decision regions to choodelf @) and, (6, d) to selectamong, G;, andg, . The code

among codes i for given values off andd. In the lemma, we Seléction forr > 0 is done according to the sign of

will relax the restriction onl, and allow for values in the range 4

0 < d < 1. As it turns out, this comes almost for free with the Y 5y _

family C. In general, the optimal code for a value dfn the Ari (0, d) = An(6, d) = 1 1—62¢ (27

rangel/2 < d < 1 is obtained by using the optimal code for . _ .

1—d, and applying the transformatian— —(z + 1) to the in-  BY (17), the maximum value of for which g,., » > 0, is the

teger symbols to be encoded. Now, since the codes of Typelifist code fron€, is such that® = 1 — 6%, namely,

in C assign the same code lengtht@nd — (= + 1) for all in-

tegersz, one needs only be concerned with the transformation 0= </>‘2_T+1. (18)
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Fig. 5. Code penalty of versus optimal prefix codes (in bits/symbol).

Thus the maximum value o for which G,., » > 0, isthe best  Theorem 2: Define A . = 3/\/5 —2andAy,, = 5¢ — 8.
code fromC, is Then

S = ;. (19) i) A(f) = 0foreveryf,0 < 6 < 1/3, and forf =
P —1 (1/2)2”""", wherer is any positive integer.
The decision rule of Lemma 4 follows from (15), (16), and i) AQ(@ has local maxima & = v/2 —1 and all¢ such that

r—1

(29). O 6 = ¢~ for a positive integer. Local maxima and

Lemma 4 extends results in [13] and [14]. The golden ratio zeroes alternate, and the function is monotonic between
¢ is mentioned in connection with Golomb codes in [20], and them.
in [14]. Also, 6~! serves as a threshold in rate of decay for iii) The absolute maximum i€\(v2 — 1) = Apay, and
applicability of the results in [19]. limsupy_,; A(f) = Ajm.

Next, we study the penalty in code length incurred by re-
stricting the code family t@, as opposed to the full family of
optimal codes. LeA¢ (6, d) denote the expected code length 021
the best code fronf for the parameter§d, d), as selected by Cl

Proof: Part i) follows from the discussion preceding the
eorem and the fact thg}, is optimal on the intervad < 6 <
(1, 0) = 1/3. For part i), assume firs# < 1/2. The best
ode inC prescribed by Lemma 4 in the centered caséis

the decision rule of Lemma 4, and define for & < v/2—1 andG, for 6 in the range(\/i—l, 1/2]. Direct
_ _ computation of the code length penalty using Lemma 2 for the
A8, d) = Ac(8, d) — Aope (0, d). various regions prescribed by Theorem 1 reveals the claimed

behavior. Furthermore,
Fig. 5 plotsA(#, d) as a function of ford = 0, 1/4, and1/2,
respectively. By Lemma 2, the expected code length for codes of (\/5_1) =it (\/5_ 1) N1 (\/5_ 1) = Apax (20)
Type lll is independent of, whereas it increases withfor the ’ ’
other types. In addition, it is readily verified thaf ; (8, d) —
A 1(6, d) decreases witll. Therefore, we focus on the line
d = 0 (represented by the upper, solid line curve in the figurelrj'?

where here and throughout the proof we omit the offset argu-
entd, which is understood to be zero, in the expected code

which yields the worst case penalty engths. . A .
Next, givenAl = 27—1 ¢ > 1, define
A
Hl(?X A(f, d) = A8, 0) = A(B). oA 1n_2
"~ |Ing '

This case is also special in thatd, 0) > 0 almost everywhere
for 6 > 6:(1,0) = 1/3, since the codeg,., » > 1, are not For an intege?, M < ¢ < 2M, consider the interval; =

optimal on the linel = 0, except for the discrete points [6¢, 6e41], where the simplified notatio 2 (1/2)1/4 is used
in lieu of the equivalent expressiofis(#, 0) or 65(¢, 0). The-
6 =06,(¢0)=203(¢,0) = (1/2)1/5, f=2m"1 orem 1 prescribes five codes for valuegiof Z,: one for each

Type IV, |, Il, and two of Type Ill, one for each interval end point

(refer to Theorem 1 and Fig. 1). When> 0, eachg,, » > 1, (see also Fig. 1). By Lemma 4, the best cod€ ifor 6 € 7,

is optimal for some interval of, of positive measure, for which in turn, isg,. if £ < £* andg,.,, if £ > £*, whereas the interval

A(8, d) vanishes. 7, contains the transition poifit= ¢~/ 2 ¢,, between the
Theorem 2 below formalizes the behavior observed in Fig. &gions in whichG,. andG,..; are optimal among codes (h

It shows thatA(#) attains its largest valug,,,., = 0.12 at To show thatA(6) is increasing i@, ¢ns) and decreasing in

6 =~ 0.41 and it oscillates betwee® and local maxima that, (¢, 8251), we use the following property, which can be proved

asf — 1, approachAy,, = 0.09. using the code length expressions.
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Property 1: Let C; andC> denote two of the five codes pre-decreasing and vanishes &6 — oo. For M > 4 this term is
scribed by Theorem 1 for values éfc Z,, with expected code below0.025 ; for M = 2 the upper bound is close @116, but
lengthsAc, (6) and Ac, (), respectively. Assume that at leastn this case (23) vanishes. Direct computation¥Hr= 1 further

one of the two codes is of Type lll, and th@at is optimal for

yields A(¢~1) = ¢—32. Summarizing these facts, by (22), we

smaller values of thanCs. Then ¢, (/) —Ac, (6) has aunique concludeA(d) < A(v2 — 1) = Ay, and

rootfc, 6 € Zs, and is increasing fof > min (6¢, ).

Now, assumé € Z,. If 8 < ¢, andCs is optimal, we have

A(0) = Au, m(0) — Ac, ()

1
= Z i, +(0) — A, s41(0)] + [, «(6) — A, (6)].
=M (21)

By Property 1, each difference on the right-hand side of (21)

increasing in the region of optimality af,. Therefore,A(6)
is increasing in that region, and, consequently(Ary, ¢ns).
Similarly, if 8 > ¢y, andC} is optimal

2M -1

_ Z i i (0) — A, i41(0)]

i=t+1 -
= [Aey (0) = Armr, e41(0)]-

A(f) =

lim sup A(0) < Appy.

6—1

(25)

Finally, since the definition of* guarantees/2 < ¢~ /*) <
1/2¢1/M  (22) and (23) imply

lim sup A(6) > Ap

6—1
Which together with (25) completes the proof. O
Corollary 1: The relative code length penalty

A8, d)/Aopt (0, d) is maximum ford = 0, in which case it
vanishes at a rat®(1/log (1-6)~1) asf—1 and achieves its
maximum valug4v/2 — 5)/14 ~ 4.7% atf = /2 — 1.

Proof: Clearly, \,:(6, d) increases witt¥ and tends to
infinity at a rateO(log(1—6)~!) asé—1. The maximum rel-
ative penalty follows from direct computation in the interval
1/3<6<V2-1. O

Again, by Property 1A(¢) is decreasing in the region of op-  The subfamilyC represents a specific code length versus

timality of C; and, consequently, iy, 62). Part i) fol-

lows from the monotonic behavior in the intervad,,, ¢a)

and(¢as, f2a7), and from the inequalities™2 < 1/2 < ¢L.
As for part iii), we bound the locally maximum penalties

Alpar) = Do, ar(Par) — A, e (ar)]
+ [, e (1) — Acs (far)]

2 AL+ A, (22)

where, againCs denotes an optimal code fgr,;. By Lemma
2, we have

¢—2

Ar=¢ - =T (1 — (/A

(23)

The right-hand side of (23) vanishes fof = 1, 2 (sincef* =
M), whereas foMl > 2 itis upper-bounded by,;,, due to the
inequalityz(1 — z) < 1/4. By Property 1, we upper-bountl,
by evaluating it abs- 1 > ¢as. Furthermore, since

Xcz (95* +1) > XTTT,Z*-|—1(9[*.|_1)
we obtain

Ay KA, e (B 41) = A, e 41 (B 1)

T )

1—65 .,

(24)

where the equality follows from Lemma 2 and the definition
of é,. It is readily verified that the right-hand side of (24) is

complexity tradeoff adopted in [3] and [13]. Similar deriva-
tions are possible with other subfamilies, which may lead to
reduced code length penalties at a moderate increase in the
complexity of both the encoding and code selection proce-
dures. In particular, [16] considers the family obtained by
augmentingC with the symmetric codes of Type Il, with

a power of two. It is then observed that the peak relative
code length penalty drops, for the augmented code family,
below 2% (notice that the code of Type Il with= 1 is
optimal in the region that produces the worst peak in Fig. 5).
However, the proof of Theorem 2 shows that,fas> 1, the
asymptotic penaltyAy,,, is due to the power-of-two restric-
tion rather than the code type selection.

APPENDIX
PROOF OFTHEOREM 1

We first present a few definitions and a lemma that will aid
in the proof of Theorem 1.
For all integergj, define

d)pli/2-d

_ J o, 7 odd
p; = 0(97 d)e(j/?)+d7

j even (26)
Notice that whery > 0, we havep; = Fg, q)(1(7)), i-€.,p; is
the jth probability in the ranking (12). Let. > 0, L > 0, and
i be integers. We definesingle tail f1, ;(m) as follows:

fr,i(m)= Z D2mtitjL- (27)
j=0
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For all integersj, let as defined in (5) and (6). Singe > 1/4 > &, the following
inequalities hold:
7y = P2j—1 + D2j. (28)
7o(l, 8, d) > ro(L, 0, d) (35)
Notice that, forj > 1, we haven;, = Pr(|z| = j) under
the TSGDPFy, 4). For even values af,, we define ssymmetric
double tail Fy, ;(m) as 71(€, 0, d) <ri(4, 0, d) (36)
Iy, _ . + . . with equalities holding only fod = 1/4.
L) = frzi(m) + fi.2i( ,Zo Mhmetiti (L/2): In the sequel, we will often loosely refer to the “code length

(29) assigned to probability” rather than the more cumbersome
The claims of the following lemma follow immediately from*“code length assigned to the symbol whose probabiligy’is
the definitions (1), (26), (27), and (29), and from straightforward
geometric sum calculations.
Lemma 5: Let L > 0, m > 0, and: be integers.

Proof of Theorem 1:
Region 1: Let L = 2¢/— 1. We recall that Region | is char-
acterized by the conditiorty (¢, d) < 6 < 61(¢, d) or, equiva-

i) For any integet: > ¢, we have lently, ro(¢, 8, d)>0andri (¢, 8, d) < 0. We refer to the latter
two conditions as’, and C1yy,, respectively. By the inequal-
fr,ilm) > fr, x(m) ities (35) and (36)(1, andCyy, imply the weaker conditions
7o(¢, 0, d) > 0 and7,(¢, 8, d) < 0, which will be referred to,
and, for every, respectively, a€;, andCyy,.
Define anmth-order reduced sourc®} ,,,, m > 0, as the
Fr i(m) > Fr 1(m). multiset of probabilities
ii) Forintegersk andh > —m, we have RY  ={po, 1, -+, Pamets fr.o(m),
fr ivan(m +h) = 6" fr_i(m) fri(m), -, fr,p—1(m)}

(whenm = 0, the source includes only tails). We build an

and, for every, :
optimal prefix code foR, ,,,, m > 0, using the usual Huffman

Fp ian(m—+h) = 05 Ey (m). (30) procedure. For real numbets b, ¢, d, we use the notation
’ {a, b} < {c¢, d} to denotemax {a, b} < min{c¢, d}. This
iii) We have notation is extended in the natural way to relations of the form
a < {e, d} anda > {¢, d}. We claim that the probabilities in
fr.i(m) = C6, o™t fr (31) Ry, are ordered as follows:
and {p27n—17 fL,L—l(m)} < {p27n—27 fL,L—Q(m)}
S {p2n1—37 fL,L—3(m)}
Fp i(m) = C(0, )"+ Iy, (32) <A{pom-r, fr,0(m)}
<pam-r-1< - <po. (37)
where
i To prove the claim, it suffices to prove the two leftmost in-
Y 1+d p p
—— 1+ 6¢=24), L=20-1,i=2j equalities, since the remaining inequalities are scaled versions
1- 9 4 of the first two. ForL = 1 or m = 1, some of the sym-
6~ - . . bols involved in the two leftmost inequalities are not part of
(1 + 6y Lo i = 2541 . vo Tettn qu par
Fri= 1-— 925*1( + ) r= 2t RIL?m, but the inequalities still apply (with some negative-in-
LA gi-14d . . dexedp; and fr,;). To prove the leftmost inequality in (37),
1—gt° L=26i=2j after applying (31), it suffices to show 1~ < f. ;_» and
gi—d fL -1 < #72%¢ Using the expression quL 1o from (33),
S L=2¢i=2j+41 the former inequality is equivalent to the condition
33
and (33) 2 L1462 et 150

N A s
Fri=2—2 177
1-6°

which in turn is equivalent t@’,, if d < i, ortoCy, otherwise.
Similarly, f, r—1 < =2+ s equivalent to eithe€}, or Cyy,.
For the second leftmost inequality in the chain (37), it suffices
to proved—2+<¢ < fL7L_3 andeyL_Q < #—2—<_ As before, the
Let &6 = 1/2 — 6. We define the auxiliary functions first inequality is equivalent to, or dominated kY ,, while the
7:(£,6,d),i = 0,1, by substitutingé for & in r;(¢, 8, d) second one is in the same situation with respe€t

L =20 (34)
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It follows that the first merge of the Huffman algorithm orBy definition (5), sinced~* > 1 andd > §, the left-hand
RIL,m produces the probability side of (39) is larger thary (4, 6, d), which is positive byC,.
Therefore,RIL0 is quasi-uniform, and its optimal prefix code

0 is constructed as described above, with= L.
Pam—1+ fr,0-1(m) =pam-1+ > PrmtL-145L Tracing the wayR} , “unfolds” into R} , , it follows that
j=0 the code length assigned 19, 7 > 0, for m such thatm —
s 1> j4,is |j/L] + 1+ Ai(fr, o). Here, Ar(f) denotes the
= Z Prm—t14jr = fr,1(m = 1). code length assigned by the optimal prefix code R , to
j=0 f,andj’ = jmod L. Thus the code length fqr, is precisely

) ) e the code length assigned By, to j, as claimed in Theorem 1
Notice thatfr,1(m — 1) = fz, —1(m), so after scaling b§~",  for Region I.

the second leftmost inequality in (37) implies that the newly cre- Region II: LetL = 2¢. In Region Il we have = d < 1/4,
ated probability satisfiegr, 1 (m — 1) > {pam—r, fr,o(m)}- (¢, 6, d) > 0, andry(4, 6, d) < 0. The latter two inequalities
Hence, the next merge in the Huffman algorithm produces thes referred to, respectively, as conditisis, andCap,.

probability We use a reduced sour&! , , defined by
o RE, m — {pOa D1, 5 P2ms Mhm+1s Thm+-25 77 Im40—1,
P2m—2+ fr, L—2(m) =pam—2 + Z D2m4L—244L Fri(m+£—-1), Fpom+4£—-1),---,
L Fro(m+£—1)}
= Z D2m—2+jL (for ¢ = 1, R¥  contains noy;’s), and we claim that the prob-
j=0 abilities in RI,E m are ordered as follows (listed in ascending
=fro(m—1). (38) order, with inequality signs omitted):

) ) ) D2m;s Pom—1, Fre(m +£ = 1), Tye—1, Pom—2, D2m—3
If L = 1, (38) still applies, since the second step uses the prob- "~ ( J: Mty Pam 2. Pra;

ability f7, —1(m) = fr,1(m — 1) produced in the first step. Froe—i(m+E=1), o fmt1s Pagm—t+41),
Also, by (27), we have Pam—t41)—1> Fr,1(m+£—=1), pagm—sy, -, P1, Do
Whenm < £, the sequence of original probabilitips stops
fr,itm) = fp iyo(m —1), 0<i<L-3. at po “in the middle” of the chain (i.e., just before one of the

I, ;'s), but the order relations between all remaining symbols

Thus after two steps (oneund) of the Huffman algorithm, are still claimed to hold. _
RY, . is transformed intdR}, .. The process continues for To prove the claim, it suffices to show that g},,,—1 <
a total of m rounds, building up the tail§;, ;, until RY ;is Fze(m + &= 1), 0) F fm + £~ 1) < nmse1, @nd ©)

reached. This reduced source is given, in ascending probability+(—1 < P2m—2. The rest of the chain follows by virtue of
order, by scaling. Using the expression féf;, , from (32) and (34), the

definitions ofr; andp;, and the fact that = ¢, we observe
_ that inequality a) is equivalent t0-,. By definition (28), and
RE o= 1(0 _5(0), --- 0)}. ; A .
2.0 = /5 2-1(0), fr0-20), -+ fr,0(0)} after eliminating common factors, inequality b) is equivalent to

We say that a finite source with probabilities 20°—1<0. (40)
Clearly, (40) is implied byo(1 + 6=2%) — 1 < 0, the latter
oo <o < - <on_1 inequality beingCsy,. Inequality c), in turn, is also equivalent to
Co, asd = 6.
is quasi-uniformif either N < 2 or oo + 01 > oy_1. Asnoted  Thefirststep of the Huffman algorithm @&y, mergeg2,,
in [12], an optimal prefix code for a quasi-uniform source okNdpz,—1, creating;,,,. By inequality b) above, suitably scaled
N probabilities admits at most two distinct codeword length8Y =", we haven,,, > Fr, ((m) = Fr, 1(m + £ — 1). Hence,
and it consists o2z M1 — N codewords of lengthlog N|, the second Huffman step joids, ((m + ¢ — 1) with 7,,,1.¢1.
and2N — 2Ms N1 codewords of lengtiflog N1, the shorter Recalling the definition of 7, in (29), we obtain
codewords being assigned to the larger probabilities. 0
We claim thatR}  is quasi-uniform. Fol. = 1, thereis  Fr,e(m+£—1)+ N1 = Z Nm+20—1+5¢ T Tm+e-1

nothing to prove. Otherwise, we need to show 7=0
fr,0-1(0) + fr, L—2(0) — fr,0(0) > 0. - ;J fhmtt=1j¢

. . . =Iy 1(m+£—2).
By Lemma 5-iii), after straightforward manipulations, the latter N ’ _ _ _
inequality is equivalent to When¢ = 1, the probabilityn,,, created in the first step is used

in the second one. Notice that, by (29), we can also write
OO 07 1 140240 — 1) > 0. (39) Fr (mAl—1)=Fp jp(m+L—2), forl<j< /-1
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Hence, after two steps (one round) of the Huffman algorithm, TABLE |
RY is transformed int®RY . After m rounds, we obtain CODE LENGTH A”SS'SGQMENTS FORREGION

RIL{O, given in ascending probability order by
RILI,O = {p07 FL,Z(E - 1), MNe—1, FL7[71(£ — ]_)7 cee
Fr (0 —=1),m, Fr1(¢ = 1} (41) po : r+1,

When/ = 1, (41) translates t® , = {po, F2,1(0)}. mie + r+4 §=1
We claim thatR} , is quasi-uniform, i.e.,

po+Frf—1)—Fp.1({—-1)>0

Probability : Code Length

Mk+je - r+j, 1<k<s-1, j20,

Ns + 7
whenever > 1. By (30), (32), and (34), the required condition o
is equivalent to Mstje + rH1475 721,
=l 160 + 64 0 r+1l4j, s+1<h<€-1, j>0.
o (0 1)6°(6~“ +6%) 0. Nhtje * T J, s J
1-—6¢
. . . . . TABLE 1l
Multiplying by (1 — 6°), and rearranging terms, the above in- CODE LENGTH ASSIGNMENTS FOR THEGOLOMB CODE (¢

equality is equivalent to

Symbol : Code Length
041 — 26°) + 64y (4—1, 6, d) > 0.

By (40), and sinces(¢ — 1, 6, d) > 0, as in Region Il we have 0
6> 6.(£, d) > 6o(¢, d) > 63(¢—1, 6, d), it follows thatRY i or+g, i>1,
is quasi-uniform.
We now construct an optimal prefix code foLT’O, and show k+jl @ r+3, 1<k<s—-1, j=0,
how it translates into an optimal code f& ,and, thus, for
the integers under the TSGD (1). Lebe theyinteger satisfying s 1 or+1,

27—l < ¢ < 2", ands = 2" — /. Assume first that < /.
SinceRI,i o contains2¢ probabilities, an optimal prefix code for
it assigns code lengthto the2s largest probabilities, namely, h+ijl : r+1+j, s+l1<h<f-1, j>0.
F — - —1).

er P (8 _1)’ 72 FL 2l = 1), m, FL’I(E_ ) b- 42) code length+1, whereas the length @,(0) is . On the other
T_h_e_ code assigns length 1 to the2¢ — 2s remaining proba- hand, becauss, is in the list (43) 1, has a place in the list (42),
bilities, namely, and it gets assigned code lengtfinstead ofr+1 for G(s).

po, Fr.e(l — 1), ne—1, -+, N1, Fr,sa(£ —1).  (43) Whens = /, i.e.,/ is a power of two, all the probabilities

H II i -
Notice that in the iterative construction of the Huffman cod'é]. RL:O are assigned the same code lengttand no swap

. ) . ing takes place, even thoughis still the lowest probability in
for R,y m 2 1, pairspa; 1, p2j, j 2 1, which correspond 7p?Hg isr:mt a member 0??“ in this case; itpets assiyned
to integers of opposite signs, merge to form Thus it suf- " L;0 (7. "L,0 »1tg 9

fices to characterize the code length assigned by the constrﬁ? %i:gnmgtlh%;lézrqggwf Lth;(gcgé()e)'f(;r:)tﬁzrgflgaea}hergt;ggflg.fes
tion to then;, 7 > 0, andpy. Similarly to Region I, tracing 9l ’ 'ginal p it

this time the wayR! ; “unfolds” into RI | we observe that 291 P2i> J = 1is obtained by appending a sign bit to the
y il code for the corresponding.

Nigje, 0 < i < 4,1 < j < m, is aleaf in a subtree rooted at . ] . . .
: Region IV: Let L = 2¢. Region |V is characterized hy <
Fr, ;+1(£-1), j levels down from the root of the subtree. Thu%/4 anc?the conditionss(Z, ¢ a?) > 0andro(¢+1, 6, d) tiyg

the code length assignedig, ;, whenm is sufficiently large is referred to, respectively, as conditiofis, andC.,,. The con-

j+ An(Fr, ; — 1)), 7 > 1. Here,Arr(+) is th I h o . e
éstigarr%ehr{t/g; (tﬁe Hl)J)f%réaﬂ cod:rf%rﬂn( i)és ke(c;o)df f?(?rt struction in Region IV follows along similar lines as that of Re-
L, 00 = BT = gion I, and it will only be outlined here.

probabilitiese in the list (42), andA;(¢) = » + 1 for proba- ; .
bilities o in the list (43). Code Iengthé fc);ro andn,, 0 << ¢,  Weuseareduced sourggy,,, defined by
are assigned directly hir;. The foregoing discussion is sum- RIL‘:m =1{Po, P1, """ DP2ms Tt Tt 2y =" > Dkt
marized in Ta_lble I, WhICh shows the code Iength_s assigned by Fp(m+20), Fro(m—+1£), -, Fr (m+0)}.
our construction for Region Il, under the assumptioq ¢. T

For ease of comparison, Table Il explicitly lists the codl follows from C., andCy, that the probabilities iR, are
length assignments of dth-order Golomb code, in a purposelySOrted in ascending order as follows:
redundant manner to match the lines of Table I. Comparing thep,,,.. po,—1, Hmte, 1 e(m +£), Prm—2, D2m—3,
code lengths in Table | with those of Table II, we observe that
our construction assigns tg and#;, ¢ > 0, the same code
lengths that?, assigns ta = 0 and: > 0, respectively, except ~ "m+1> Fra(m+8), pam—e), *++» P2, P1s Po-
that the code lengths fér= 0 and: = s have been exchanged. Similarly to Region Il, a round consisting of two steps of
This is due to the fact that is the smallest probability in the Huffman algorithm orR}Y, leads toR}Y,, _,, with the
RIL{O, and thus falls into the list (43) of probabilities assignegair ps,.., p2.,,—1 merging to formy,,,, andr,,,.... merging with

S+j€ : 7'+1+.7a JZ]-)

Thm+e—1, FL, [,1(7’71 + Z)v Ty Pa(m—e41)s P2(m—e41)—1;
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TABLE 11l P, 5)(-), and letp; = Py 5 (1(j)) for j > 0, extending in
CODE LENGTH ASSIGNMENTS FORREGION |V ana|ogy Withpj for j < 0. We can write
Probability : Code Length Pl gy()
po : T+1, = (0, d)gl=+
o _[C0, Do~V = 4Py sy (—x— 1), 220
e =T +J’ J 2 1’ B 0(97 d)97(1/2)97x+6 = ryP(e,é)(_‘T)v <0
Mhtje @ T+, i<k<s—1, §>0, for a constany. Therefore, we have; = 4p,, for allintegers
4, which means that once the probabilities are ordered, and ig-
s r+1, noring scaling factors, the distributidf, (), d > 1, “looks”
_ s exactly like the distributiorPs, s)(-), with po removed. Noting
Ms4je = T+9, 121 that in the constructions for reduced sources in Regions Il and
Mgt r+l4j, s+1<h<f-1, j>0. IV po was involved only in the final stage, when an optimal code

for the “core” reduced sourcés} , or R}, was determined,

we conclude that the same constructions can be used for Re-
gions I and IV, except for that final stage. The formalization

of this idea is outlined next.

Fr ¢(m4+-£€) toformFy,_{(m+£—1). After m rounds, we obtain -
z,e( ) £l ) Let L = 2¢. For all integery, let

the reduced sourcB} , which consists of the following/ + 1

probabilities, in ascending order: V; = Paj_2 + P2j_1

p0, Ne> Fr,e(€), me—1, Fre—1(£), -+, m, Fr,1(4). and, for all integers define theasymmetric double tail
It follows from C., andCl, thatRIL‘:0 is quasi-uniform. Now, K =
if ~ is the integer satisfying™ ! < ¢ < 27, thenr also satisfies z,i(n) = Z Vntitje
2" < 20+ 1 < 271 Thus an optimal prefix code foRY, . B .
contains2 ! — 2¢ — 1 = 2s — 1 codewords of length, and Itfollows from the discussion above that we can write
2¢ — 2s + 2 codewords of length + 1. The list of probabilities v =75, jEZ

corresponding to codewords of lengtlis given by

Fr s(0), ns—1, Fr,s-1(£), -~ m2, Fr 2(€), m, Fr,1(£)

while the list of probabilities corresponding to codewords of Kp,i(n) =~FLi(n), i€Z
lengthr + 1 is given by

and

where7;; andF';, ; are analogous tg; and 7, ;, respectively,

Po> Mes Fr,e(€), -+ Mst1, P, s41(£), ms- but defined for the distributio, s). Assume(8, d) falls in
(If £ = 1, the first list consists just af, 1 (1), while the second Region II, and define the reduced source
list consists ofpg andwn;.) RILI:m ={P0s PLs s Pame1s Vingls Vg2 * s Vingle1s

Proceeding as in Region Il, from the code length distribution
for RYY,, we can now derive a code length distribution fir Kpa(m+E-1), Kpa(m+£-1), -,
andr;, j > 0. This distribution is summarized in Table IIl. K m+£—1)}

We observe that our construction assigngd@nd;, i > 0, This source is equivalent to a scaled versiorRdf ,, — {po},
the same code length that &h-order Golomb code assigns toput for the distribution?, ). Therefore, the iteration leading

i = 0 .and: > 0, respectively, except thab is assigned a code from R’ | to RY! , applies, and aftetm steps of the Huffman
one bit longer, and al,+;¢, j > 1, are assigned a code one big|gorithm, we have

shorter. Since length transitions@# occur precisely at integers I

congruent tas modulo/ (in that the length of7,(s + j¢) is Rio =KL (0 =1), vy, Kpea(£=1), vz, -,

one more than the length 6#,(s — 1 + j£)), this shortening Kp2(0—1), v, Kp (£ —1)}

is equivalent to assigning 1, < > s, the code length tha¥;  \yhere the probabilities are listed in ascending order. The con-
would assign ta — 1. The codewords fap, (that needs to grow sgryction now departs from that of Region I1. We observe that,
by one bit relative to the lengthof G,(0)) and7, (that retains \ithout an analog opo in the way, we can carry odt— 1 ad-

the lengthr+1 of G¢(s) but just lost that codeword t.1) are  gitional merges, which, by the definition ¢, ;, yield
obtained by appending a bit &,(0). As in the case of Region '

I, the proof is completed by observing that thg j > 0, split Kr,i(f=1) +vi1 = Kr,i-1(0), 2sish
into original probabilities, amounting to the appendage of a sigm addition, we have(;, 1 (¢ — 1) = K, ¢(0). Thus we obtain
bit to the code fom;. a further reduced source

It remains to prove Theorem 1 for Region Ill. Recall that this ot
region is the union of Regions'Jllll’, and V. Ri—1 = 1K0,0(0), Kp, 1 (0), -+, Kr1(0)}-
Regions I1and IV: These regions satisfy the same conkH is readily verified tha’rRILI:_]L is quasi-uniform. Thus the con-
ditions as Regions Il and IV, respectively, but are defined fatruction yields arfth-order Golomb code fow, 15, v3, - -+,
d > 1/4,i.e., we haved = 1/2 — d. Consider the distribution wherev,, j > 1, gets assigned a code length corresponding to
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that of G¢(7 — 1). Splitting each leaf in the tree &#, to obtain
codewords for the original probabilitigs;_» andp,,;_; that
formedw;, we obtain a code length distribution identical to that

of an Lth-order Golomb code fary, p1, p2, - -, as claimed by [1]
Theorem 1 for Region 'i(as part of Region Ill). Notice, how- [2]
ever, that the coding tree f6¥;, is different from that of a “split”
Gy, as illustrated in Fig. 3. 3]
Similar considerations apply to Region'|\Where we define
areduced sourc®},, analogous t&R}’,, — {po}. This leads
to a core source (4]
RY o ={ve, K1, e(8), vees, Ki,-1(8), -+, 5]
Vo, KL72(£), V1, KLyl(f)}
which can be further reduced to obtain [6]
Rlyl_l ={K7,e(0), K1,0-1(0), ---, K7,1(0)}.
This source, again, leads to &t-order Golomb code for the (7]
v;, or, equivalently, ar.th-order Golomb code for the original
probabilities. (8]
Region IIl: Let L = 2¢. Region IlII is characterized by
the conditions2(4, 4, d) > 0 andrs(4, 6, d) < 0, referred to,  [9]
respectively, as conditionSsz, andCagy,.
Here, we define a reduced sourgq',, given by [10]
RTLT,T;R :{P07P17 oty Pam—1, fL,O(m)7 [11]
fL,l(m)7 "'7fL,L—1(m)}- [12]

This reduced source appears to be formally identicdtkgm
used in Region I. However, inspecting (31) and (33), we note 3
that the expressions fgf, ;(m) whenL is even are quite dif-
ferent from those applying wheh is odd. Nevertheless, after
appropriate reinterpretation ¢f, ;, the order relations claimed
in (37) hold for Region Il1, being implied this time byCs,
andCsgy, rather tharCy,, andCyy,. Similarly, the evolution from
R to RYUL) by way of the Huffman procedure is formally [14)
identical to that fronR}, , to R} ,. Finally, the quasi-unifor-
mity of RYL, follows from Cs,, and thus, the construction in [17]
Region IIf yields a code whose length assignmentggr > 0,
is identical to that of ad.th order Golomb code for > 0.
Optimality: The optimality of the codes prescribed by (45
Theorem 1 follows from the same argument presented in [12f
applied separately to each region. The main formal requiremet®]
is the convergence of the average code length, which was estgby,
lished in Lemma 2. This completes the proof of Theoreni 1.

[14]

[15]
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