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Optimal Prefix Codes for Sources with Two-Sided
Geometric Distributions
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Abstract—A complete characterization of optimal prefix codes
for off-centered, two-sided geometric distributions of the integers
is presented. These distributions are often encountered in lossless
image compression applications, as probabilistic models for image
prediction residuals. The family of optimal codes described is an
extension of the Golomb codes, which are optimal for one-sided
geometric distributions. The new family of codes allows for en-
coding of prediction residuals at a complexity similar to that of
Golomb codes, without recourse to the heuristic approximations
frequently used when modifying a code designed for nonnegative
integers so as to apply to the encoding of any integer. Optimal de-
cision rules for choosing among a lower complexity subset of the
optimal codes, given the distribution parameters, are also investi-
gated, and the relative redundancy of the subset with respect to the
full family of optimal codes is bounded.

Index Terms—Exponential distribution, geometric distribution,
Golomb codes, Huffman code, infinite alphabet, lossless image
compression, prediction residual.

I. INTRODUCTION

PREDICTIVE coding techniques [1] have become very
widespread in lossless image compression, due to their

usefulness in capturing expected relations (e.g., smoothness)
between adjacent pixels. It has been observed [2] that a good
probabilistic model for image prediction errors is given by
a two-sided geometric distribution(TSGD) centered at zero.
Namely, the probability of an integer error valueis pro-
portional to , where is a scalar parameter that
controls the two-sided exponential decay rate. We assume in
the sequel that prediction errors can take on any integer value,
an assumption that, in the context of exponential distributions,
is well approximated in practice by the use of large-symbol
alphabets (e.g., 8 bits per pixel).

Although the centered TSGD is an appropriate model for
memoryless image compression schemes, it has been observed
[3], [4] that prediction errors incontext-basedschemes [3]–[6]
exhibit a dc offset, and a more appropriate model is given by
anoff-centeredTSGD. This model is also useful for better cap-
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turing the two adjacent modes often observed in empirical con-
text-dependent histograms of prediction errors. More specifi-
cally, in this paper we consider integer distributions of the form

(1)

where and is a normalization
factor given by

(2)

The parameter determines the rate of decay of the distribution,
while determines the offset of its center. The restriction on the
range of is justified through straightforward application of ap-
propriate translations and reflections of the real line. In practice,
the unit interval containing the center of the distribution can be
located by a suitable adaptive predictor with an error feedback
loop [3], [4]. The TSGD centered at zero corresponds to ,
and when is a bimodal distribution with equal
peaks at and .1

The TSGD model is attractive in practical context-con-
ditioned image compression schemes since the distribution
in each context is determined by just two parameters (rate
of decay and offset), despite the source alphabet being, in
principle, infinite (and, in practice, finite but quite large). This
allows for the utilization of a fairly large number of contexts,
while keeping the total number of parameters in the system at
a moderate level. This is particularly important in an adaptive
setting, where the statistics are “learned” from the data, and the
code length includes amodel costterm proportional to the total
number of free statistical parameters [7]. Adaptive strategies
for TSGD’s based on symbol-by-symbol prefix codes, as well
as universal schemes based on arithmetic coding, are discussed
in the companion paper [8].

It is readily verified that the TSGD (1) has a finite entropy
rate, given by

(3)

where

is the binary entropy function ( denotes the logarithm to
base two of ), and

(4)

1The preference of�1 over+1 here is arbitrary.
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is the probability that a random variable drawn according to the
distribution (1) be nonnegative. By [9], the finiteness of
guarantees that a minimum expected-length prefix code exists
and can be obtained by a sequence of Huffman-like procedures
(however, this general result is nonconstructive). Infinite en-
tropy distributions are addressed in [10].

The main result of this paper is a complete characterization
of optimal prefix codes for the TSGD (1). The family of optimal
codes will be an extension of theGolomb codes[11], which are
optimal forone-sidedgeometric distributions (OSGD’s) of non-
negative integers [12]. The optimal codes for the TSGD preserve
the simplicity of the Golomb code, which enables simple calcu-
lation of the codeword of every given source symbol, without
recourse to the storage of code tables for large alphabets. This
property makes the family attractive for use in adaptive schemes
[3], [13], [14] since it avoids the need to dynamically update
code tables as in traditional adaptive Huffman coding (see, e.g.,
[15]). Thus the economy of parameters of the TSGD is reflected
in the simplicity of the codes, and only a small number of vari-
ables need to be updated, and simple rules applied, to adap-
tively select a code for each sample. The optimal family of prefix
codes derived here enables the adaptive strategies for the TSGD
studied in [8] and also in [16].

Previous approaches to finding efficient prefix codes for
TSGD’s have focused mainly on the case . A popular ap-
proach [13] is to encode an integer by applying a Golomb code
to its index in the sequence .
Notice that with , this “folding” of the negative values
into the positive ones ranks the integers in nonincreasing
probability order. A different heuristic approach, based on
encoding the absolute value with a Golomb code and appending
a sign bit for nonzero values, was proposed in [17]. As shown
in Section II, these strategies are suboptimal for some ranges of
the parameters , even when restricted to the line .
Some partial answers to the question of optimal codes for

can also be found in [18].
The remainder of the paper is organized as follows: In Sec-

tion II, we present our main result, characterizing the optimal
prefix code for a TSGD given its parameters . As it turns
out, the two-sided nature of the distribution, and the two-dimen-
sionality of the parameter space add surprising complexity to the
characterization, as compared to the one-sided case. The param-
eter space of will be divided into four types of regions,
with a different optimal code construction applying to each type.
The codes for two of the region types are, in general, fairly non-
intuitive variants of Golomb codes, which had not been previ-
ously described in the literature. The section includes a general
discussion of the method of proof of optimality, and insight into
the origins of the fairly intricate partition of the plane.
Once the codes and regions are appropriately “guessed,” the ac-
tual proof, which uses a technique from [12], involves relatively
tedious calculations, and is deferred to the Appendix. In Sec-
tion III we derive the average code lengths attained by the op-
timal codes over the parameter space of , and investigate
their redundancy. Finally, in Section IV, we consider a simpli-
fied, suboptimal subset of codes used in practice [3], [13]. We
present optimal criteria to choose among these codes for given
values of and . These criteria extend results in [13] and [14],

and admit efficient approximation in an adaptive setting, which
is explored in more detail in [8]. Moreover, we bound the rel-
ative redundancy of the reduced family with respect to the full
family of optimal codes, thus providing formal proof of a fact
that had been observed in the literature (see [16], and [13] for
OSGD’s).

II. OPTIMAL PREFIX CODES FORTSGD’S

In this section, we develop a complete characterization of
minimum expected-length prefix codes for the TSGD (1). To
this end, we will partition the parameter space of

, into regions, each region corresponding
to a variant of a basic code construction device. In the next few
definitions and lemmas, we describe the partition and some of
its basic properties.

For a given value of , define . Clearly,
. For every positive integer and every pair of model

parameters , define the functions

(5)

(6)

(7)

and

(8)

Lemma 1:

i) Given and , has a unique root
. Similarly, for , , , and have unique

roots in , denoted, respectively,
and .

ii) For and , we have if
and only if .

iii) For , we have

where we define . Moreover, equality be-
tween and , and between and

occurs only at , while equality be-
tween and occurs only at .
Therefore, .

Proof: i) The existence and uniqueness of a root
of , is established by ob-

serving that, for fixed and in the appropriate ranges,
is a continuous function of in
as has a positive limit as and

. The monotonicity of also yields
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part ii) of the lemma. Notice that as ,
justifying the definition of .

As for part iii), we first observe that

where the last inequality follows from , and .
Thus due to the strict monotonicity of and , we must have

. We now compare with .
For clutter reduction, we omit the arguments of the
when they are clear from the context. It follows from the defi-
nition of that

Substituting for in definition (6), we obtain

where the last inequality follows from . Thus by part ii),
, with equality occurring at .

Next, definitions (7) and (8) imply
for . Thus we must have by parts i) and ii)
of the lemma. Equality occurs at , in which case

, and . Also, we have

Substituting for in the expression for derived
from definition (5), we obtain

Thus , with equality at .

It follows from Lemma 1 that, for a given value of, the func-
tions define a partition of the interval into subintervals,
with boundaries given by the values , ordered as follows:

(9)

Moreover, it is easy to see from the definition ofand from (5)
that as .

The different intervals defined by the boundaries be-
come two-dimensional regions once the dependence onis
taken into account. Each pair of model parameters falls
in a region characterized by an integer parameter , and
by one of four subintervals associated with, and determined
by . By Lemma 1, part ii), the parameter

is given by

(10)

Since is well defined for all
and in the range of interest. In fact, can be explicitly
computed by setting and solving the quadratic equation

which has a unique solution in the open interval . Then

For ease of reference, we label the regions defined by the
partition in (9), for each value of, as follows:

Region I:
Region II:
Region II′:
Region III′:
Region IV:
Region IV′: .

We defineRegion IIIas the union of Regions II′, III ′, and IV′.
The various two-dimensional regions for are illustrated
in Fig. 1. Notice the symmetry around .

We now turn to the basic building blocks of our code con-
struction. For any integer, define

(11)

For nonnegative integers, the inverse function of is
given by
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Fig. 1. Parameter regions. Region III is defined as the union of Regions II′, III ′, and IV′.

Since , the integers are ranked in decreasing prob-
ability order by

(12)

Thus is the index of in the probability ranking, starting
with index and with ties, if any, broken according to the order
in (12). Conversely, is the symbol with theth highest prob-
ability.

For any positive integer , let denote the Golomb code
[11] of order , which encodes a nonnegative integerinto a
binary codeword consisting of two parts: a) anadjusted
binary representation of , using bits if

, or bits otherwise, and b) aunary
representation of , using bits. Here,
denotes the least nonnegative residue of . We will de-
note by the binary string resulting from appending

to .

We are now ready to state the main result of the paper.

Theorem 1: Let denote an integer-valued random variable
distributed according to the TSGD (1) for a given pair of model
parameters , and let
as defined in (10). Then, an optimal prefix code foris con-
structed as follows:

Region I: If

encode using .
Region II: If and

encode using the code , where the mapping
is defined below, and append a sign bit whenever
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. Let be the integer satisfying , and let
. Define

and
and

otherwise.

Region III: If and

or and

encode using .
Region IV: If and

define as in Region II, encode using defined below,
and append a sign bit whenever .

Discussion

Relation to Prior Work: Theorem 1 includes the main result
of [12] as a special case when . In this case, the
distribution (1), after reordering of the integers in decreasing
probability order, is equivalent to an OSGD with parameter

. As shown in [12], the optimality transition for such
a distribution between the th-order Golomb code and the

st, , occurs at the (unique) value such
that . It can readily be verified that

if and only if , and
if and only if .

Notice that the optimal codes for Regions I and III areasym-
metric, in that they assign different code lengths toand
for some values of . In contrast, the codes for Regions II and
IV are symmetric. The mapping (11) was first employed in [13]
to encode TSGD’s centered at zero by applying a Golomb code
to . Theorem 1 shows that this strategy (which was also
used in [3] and always produces asymmetric codes) is optimal
for values of and corresponding to Regions I and III, but is
not so for Regions II and IV. In fact, both [3] and [13] actually

use asubfamilyof the Golomb codes, for which the code pa-
rameter is a power of two, making the encoding and decoding
procedures extremely simple. This subfamily is further inves-
tigated in Section IV. A different heuristic approach, based on
encoding the absolute value with a Golomb code and appending
a sign bit for nonzero values, was proposed in [17]. Theorem
1 shows that this heuristic (which always produces symmetric
codes) is optimal only in Region II, and then only whenis a
power of two, in which case is the identity mapping.

Method of the Proof:In the proof of Theorem 1, we will
borrow the concept of areduced source, used in [12] to prove
the optimality of Golomb codes for OSGD’s. Reduced sources
were also applied in [19] to construct optimal prefix codes for
distributions whose tails decay faster than a geometric rate with
ratio , e.g., Poisson distributions. The concept is gen-
eralized in [9] and shown to be applicable to all finite entropy
distributions of the integers, albeit in a nonconstructive fashion.

Here, for each of the regions defined for , and each in-
teger , we will define a finite th-order reduced source

as a multiset containing the first probabilities in
the ranking (12), where depends on the region, and
a finite set ofsuper-symbolprobabilities, some of which repre-
sent infinite “tails” of the remaining integers. The indexalso
expresses region dependence, and it satisfies for
Region I and otherwise, where .

We will use Huffman’s algorithm to construct an optimal
prefix code for , and will then let tend to infinity, thus
obtaining a code for the integers. The code length assigned by
our construction to an arbitrary integerwill be the one as-
signed by the optimal prefix code for , for the least
such that . By the nature of the construction,
this code length will remain unchanged for larger values of.
The formal argument validating the limiting step, and why it
yields an optimal prefix code for the original infinite source, is
given in [12] and it carries to our construction. The exact def-
inition of the reduced sources used, and the way the Huffman
construction on a reduced source proceeds, will vary according
to the region the parameter pair falls into, thus leading to
different code structures for the different regions.

It turns out that the two-sided nature of the distribution, and
the two dimensionality of the parameter space add surprising
complexity to the characterization, as compared to the one-sided
case. This complexity is evidenced by the variety of regions and
codes in Theorem 1 (in fact, much of the intricate structure exists
even in the simpler, one-dimensional case ). The codes
for Regions II and IV had not been described in the literature,
except for the special case mentioned above in connection with
the heuristic in [17]. Examples of optimal code trees for Regions
II and IV, with , are shown in Fig. 2, together
with the tree of for ease of reference. In either region, the
tree is a fairly nonintuitive transformation of the one resulting
from applying to and appending a sign bit when .
In the case of Region II, the nodes for the symboland the
pair (regarded as one symbol) have switched places
relative to the locations of and , respectively, in the tree for

. This is due to the action of . In the case of Region IV,
the original node for in has been split to accommodate
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Fig. 2. Coding trees for Regions II and IV,` = 3(s = 1).

and , and all other nodes have been “promoted,” i.e., the pair
is at the location of in . This corresponds to

the application of , noting that in this case, there are no
integers in the range .

We now offer some insight into how the various parameter
regions (and hence the above mentioned complexity) arise.
The functions and determine the pos-
itive integer parameter characterizing a basic property of
Golomb-type codes: Starting from some codeword length,
the code contains exactly codewords of length for all

(for the codes of Theorem 1, is at most , where
is the minimal codeword length). The lines

mark the transition from regions with to regions
with , , while the lines mark the
transition from to . The role of the functions

and is, therefore, analogous to that of the function
determining the code transitions in [12].

The lines and , in turn, deter-
mine how the optimal code construction handles “natural pairs”
of symbols in regions with . These are pairs of symbols
that are close in probability, i.e., for and

for , where is a positive integer. Focusing
first on the case , and assuming is sufficiently large,
we observe that if the optimal code tree construction merges
and (i.e., makes them sibling leaves), then by the constraints
imposed by and in determining the value of, the resulting
probability must fall in the prox-
imity of the interval on the
real line. It turns out that the regions for are determined
by whether is to theleft (Region II), inside(Region III′), or
to theright (Region IV) of the interval. When falls inside the
interval, merging of and in the optimal tree construction
would prevent the translated natural pair
from merging. Because of the self-similar character of the
distribution, this condition applies to all, and it results, in
general, in a construction that does not merge natural pairs (e.g.,
the asymmetric codes of Region III′). On the other hand, when

falls outside the interval between the probabilities of a natural
pair, these pairs tend to merge, resulting in the symmetric codes
of Regions II and IV.

A similar situation exists for , but with a twist. There,
again, the optimal construction will not merge natural pairs in
Region III′, and it will in Regions II′ and IV′. Nevertheless, re-
gardless of whether they are merged or not, symbols in a nat-
ural pair end up with equal code lengths in the three subregions

of Region III. This is due to the fact that the optimal code is a
Golomb code of even parameter, and that every integer belongs
to a natural pair when . Thus while the three subre-
gions comprising Region III for a givenadmit the same op-
timal prefix code, the iterations leading to the optimal length
distribution, and their underlying trees are different: the tree
constructed in Regions II′ and IV′ corresponds to that of ,
but with each leaf split into two, while the tree for Region III′
corresponds directly to that of , . The two tree con-
figurations are illustrated in Fig. 3, for . A discussion of
the number of different coding trees that can be optimal for a
given distribution, including some infinite alphabet cases, can
be found in [20].

The proof of Theorem 1 is deferred to the Appendix.

III. CODE LENGTH AND REDUNDANCY

We refer to the prefix codes defined in Theorem 1 for Re-
gions I–IV as codes ofTypes I–IV, respectively. The expected
code lengths for these codes when applied to the TSGD (1) are
derived from their definitions in Theorem 1, and from the length
distribution of the Golomb code, which follows directly from its
definition. The resulting average code lengths, summarized in
the following lemma, are computed by applying straightforward
geometric sums, and derived sums of the general form .
Notice that the expected code lengths apply to all allowable pa-
rameter values , and not just to the region for which a code
is optimal.

Lemma 2: Let be an arbitrary positive integer, and let
denote the average code length for a code of Type

( I, II, III, IV), for the given value of , when applied to
a TSGD with parameters . Let and be defined as in
Theorem 1, and let . Then, we have
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Fig. 3. Coding trees for Region III,̀ = 1.

Fig. 4. Redundancy of optimal prefix codes (in bits/symbol).

Let denote the expected code length for the op-
timal prefix code corresponding to the parameters . De-
fine theredundancyof the family of optimal prefix codes as

where is the entropy rate given in (3).
Fig. 4 plots the redundancy as a function offor

and respectively. The region near is omitted, to
allow appropriate scaling of the rest of the plot. The redundancy
is highest in that region, and its behavior is as follows: When

, the entropy rate tends to zero as , and the ex-
pected code length tends to 1 bit/symbol. When , the
entropy rate tends to one as , since the TSGD degener-
ates, in the limit, into a bimodal distribution with all the prob-
ability mass distributed equally between and .
The expected code length of the optimal code, in turn, tends to
1.5 bits/symbol, yielding a limit of 0.5 bit/symbol for the redun-
dancy as approaches zero. However, for values of ,
which are most likely to occur in practical applications, therel-
ative redundancy remains below 3%.

It is apparent from the plots in Fig. 4 that the redun-
dancy vanishes at the points and

. It is well known that the redundancy of
the Huffman code for a discrete distribution is zero if and only
if the distribution isdyadic, i.e., all its symbol probabilities are
powers of two. The following lemma shows that the TSGD (1)

is indeed dyadic for the mentioned two points in the parameter
space, and nowhere else.

Lemma 3: The TSGD (1) is dyadic if and only if

Proof: Assume the distribution is dyadic. Then, all ratios
between symbol probabilities are powers of two. In particular,
we can write and for integers

, where at least one of the inequalities is strict. Consider the
probability . We have

Clearly, this probability is dyadic if and only if
is a power of two, which holds if and only if either

or and . These cases correspond to
and , respectively. It is readily

verified that the corresponding dyadic distributions are
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and

respectively. The first distribution corresponds to either tree in
Fig. 3, while the second corresponds to the tree for a unary code.

The plots of Fig. 4 are analogous to the redundancy plot in
[12] for the OSGD case. In fact, the plot for is equiva-
lent to that in [12], except for the fact that a point with abscissa
in the figure corresponds to one with abscissain [12]. Fur-
thermore, the dependency of the redundancy onvanishes as

approaches. This is evidenced by the three curves merging
in the figure, and can be formally verified by inspecting the ex-
pression for the entropy in (3) and the code lengths in Lemma 2.
Therefore, the oscillatory pattern of the redundancy near ,
characterized in [12] for Golomb codes, applies to the codes of
Theorem 1 as well.

IV. L OW-COMPLEXITY CODE SUBFAMILIES

The family of optimal prefix codes presented in Section II
makes use of Golomb codes of arbitrary order . Prac-
tical schemes such as [3] and [13] have been restricted to sub-
families based on Golomb codes for whichis a power of
two, which yield clear complexity advantages already recog-
nized in [11]. Given an integer parameter , the code
encodes a nonnegative integerin two parts: the least sig-
nificant bits of , followed by the number formed by the re-
maining higher order bits of, in unary representation. The code
length is bits. Thus with this restriction, the divi-
sion by an arbitrary positive integer, necessary for encoding

with , and deemed too complex in some applications, is
trivialized. Furthermore, the modified binary encoding of the
remainder becomes an identity mapping, instead of a
nontrivial, variable-length mapping in the general case. Finally,
as shown in [3], [16], and the companion paper [8], codes for
which admit very simple yet accurate online adapta-
tion strategies, and, as we shall see in the sequel, the complexity
benefits obtained from the restriction of the code family have a
rather modest cost in code length.

Motivated by these considerations, we next study the family
of prefix codes utilized in [3] and [13]. Let , , denote

a code that maps an arbitrary integerto . Then,
the family of interest is defined as . Notice
that is the code of Type I with , while for is
the code of Type III with . Thus is the subfamily of
asymmetric codes of Section II for which the parameter of the
associated Golomb code is a power of two.

Lemma 4 below presents optimal decision regions to choose
among codes in for given values of and . In the lemma, we
will relax the restriction on , and allow for values in the range

. As it turns out, this comes almost for free with the
family . In general, the optimal code for a value ofin the
range is obtained by using the optimal code for

, and applying the transformation to the in-
teger symbols to be encoded. Now, since the codes of Type III
in assign the same code length toand for all in-
tegers , one needs only be concerned with the transformation

when dealing with . Lemma 4 addresses this case by denoting
, and implementing the check on the range

of as part of the classification procedure. Also, the classifica-
tion will be more readily described by changing variables, and
mapping the parameter pair to a pair , where

(13)

and is given in (4). We recall that is the probability of an in-
teger distributed according to being nonnegative. With

and , the range of is , and
the range of is . Also, corre-
sponds to , and the mapping corresponds
to . In adaptive schemes, the parametersand are
a more natural choice for characterizing the TSGD, as they are
estimated by very simple functions of the observed data [3], [8],
[16].

Lemma 4: Consider an integer-valued random variable with
probability distribution for a given pair of model param-
eters . Let be the trans-
formed parameters derived according to (13) and (4), and define

. The following decision rules minimize the ex-
pected codeword length over the subfamily of codes.

a) If , compare and . If is largest, choose
code . Otherwise, if is largest, choose . Otherwise,
choose .

b) If , choose code provided that

(14)

Proof: Let denote the average code length for
code , and let denote the average code length
for code . It follows from Lemma 2 applied to the code of
Type I and , and from the definitions of and
that

(15)

The other codes in the subfamily under consideration ( )
are of Type III, so we apply Lemma 2 for that type, with

, to obtain

(16)

In particular, , which must be compared to
and to select among , , and . The code

selection for is done according to the sign of

(17)

By (17), the maximum value of for which is the
best code from , is such that , namely,

(18)
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Fig. 5. Code penalty ofC versus optimal prefix codes (in bits/symbol).

Thus the maximum value of for which , is the best
code from , is

(19)

The decision rule of Lemma 4 follows from (15), (16), and
(19).

Lemma 4 extends results in [13] and [14]. The golden ratio
is mentioned in connection with Golomb codes in [20], and

in [14]. Also, serves as a threshold in rate of decay for
applicability of the results in [19].

Next, we study the penalty in code length incurred by re-
stricting the code family to , as opposed to the full family of
optimal codes. Let denote the expected code length of
the best code from for the parameters , as selected by
the decision rule of Lemma 4, and define

Fig. 5 plots as a function of for and
respectively. By Lemma 2, the expected code length for codes of
Type III is independent of, whereas it increases withfor the
other types. In addition, it is readily verified that

decreases with. Therefore, we focus on the line
(represented by the upper, solid line curve in the figure),

which yields the worst case penalty

This case is also special in that almost everywhere
for , since the codes are not
optimal on the line , except for the discrete points

(refer to Theorem 1 and Fig. 1). When , each , ,
is optimal for some interval of, of positive measure, for which

vanishes.
Theorem 2 below formalizes the behavior observed in Fig. 5.

It shows that attains its largest value at
and it oscillates between and local maxima that,

as , approach .

Theorem 2: Define and .
Then

i) for every , and for
, where is any positive integer.

ii) has local maxima at and all such that
for a positive integer . Local maxima and

zeroes alternate, and the function is monotonic between
them.

iii) The absolute maximum is , and
.

Proof: Part i) follows from the discussion preceding the
theorem and the fact that is optimal on the interval

. For part ii), assume first . The best
code in prescribed by Lemma 4 in the centered case is
for and for in the range . Direct
computation of the code length penalty using Lemma 2 for the
various regions prescribed by Theorem 1 reveals the claimed
behavior. Furthermore,

(20)

where here and throughout the proof we omit the offset argu-
ment , which is understood to be zero, in the expected code
lengths.

Next, given , define

For an integer , consider the interval
, where the simplified notation is used

in lieu of the equivalent expressions or . The-
orem 1 prescribes five codes for values of : one for each
Type IV, I, II, and two of Type III, one for each interval end point
(see also Fig. 1). By Lemma 4, the best code infor ,
in turn, is if and if , whereas the interval

contains the transition point between the
regions in which and are optimal among codes in.
To show that is increasing in and decreasing in

, we use the following property, which can be proved
using the code length expressions.
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Property 1: Let and denote two of the five codes pre-
scribed by Theorem 1 for values of , with expected code
lengths and , respectively. Assume that at least
one of the two codes is of Type III, and that is optimal for
smaller values of than . Then, has a unique
root , and is increasing for .

Now, assume . If and is optimal, we have

(21)

By Property 1, each difference on the right-hand side of (21) is
increasing in the region of optimality of . Therefore,
is increasing in that region, and, consequently, in .
Similarly, if and is optimal

Again, by Property 1, is decreasing in the region of op-
timality of and, consequently, in . Part ii) fol-
lows from the monotonic behavior in the intervals
and , and from the inequalities .

As for part iii), we bound the locally maximum penalties

(22)

where, again, denotes an optimal code for . By Lemma
2, we have

(23)

The right-hand side of (23) vanishes for (since
), whereas for it is upper-bounded by due to the

inequality . By Property 1, we upper-bound
by evaluating it at . Furthermore, since

we obtain

(24)

where the equality follows from Lemma 2 and the definition
of . It is readily verified that the right-hand side of (24) is

decreasing and vanishes as . For this term is
below ; for the upper bound is close to , but
in this case (23) vanishes. Direct computation for further
yields . Summarizing these facts, by (22), we
conclude and

(25)

Finally, since the definition of guarantees
, (22) and (23) imply

which together with (25) completes the proof.

Corollary 1: The relative code length penalty
is maximum for , in which case it

vanishes at a rate as and achieves its
maximum value 4.7% at .

Proof: Clearly, increases with and tends to
infinity at a rate as . The maximum rel-
ative penalty follows from direct computation in the interval

.

The subfamily represents a specific code length versus
complexity tradeoff adopted in [3] and [13]. Similar deriva-
tions are possible with other subfamilies, which may lead to
reduced code length penalties at a moderate increase in the
complexity of both the encoding and code selection proce-
dures. In particular, [16] considers the family obtained by
augmenting with the symmetric codes of Type II, with
a power of two. It is then observed that the peak relative
code length penalty drops, for the augmented code family,
below 2% (notice that the code of Type II with is
optimal in the region that produces the worst peak in Fig. 5).
However, the proof of Theorem 2 shows that, as , the
asymptotic penalty is due to the power-of-two restric-
tion rather than the code type selection.

APPENDIX

PROOF OFTHEOREM 1

We first present a few definitions and a lemma that will aid
in the proof of Theorem 1.

For all integers , define

odd
even

(26)

Notice that when , we have , i.e., is
the th probability in the ranking (12). Let , and

be integers. We define asingle tail as follows:

(27)
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For all integers , let

(28)

Notice that, for , we have under
the TSGD . For even values of , we define asymmetric
double tail as

(29)
The claims of the following lemma follow immediately from

the definitions (1), (26), (27), and (29), and from straightforward
geometric sum calculations.

Lemma 5: Let , , and be integers.

i) For any integer , we have

and, for even ,

ii) For integers and , we have

and, for even ,

(30)

iii) We have

(31)

and

(32)

where

(33)
and

(34)

Let . We define the auxiliary functions
, by substituting for in

as defined in (5) and (6). Since , the following
inequalities hold:

(35)

(36)

with equalities holding only for .
In the sequel, we will often loosely refer to the “code length

assigned to probability ” rather than the more cumbersome
“code length assigned to the symbol whose probability is.”

Proof of Theorem 1:
Region 1: Let . We recall that Region I is char-

acterized by the conditions or, equiva-
lently, and . We refer to the latter
two conditions as and , respectively. By the inequal-
ities (35) and (36), and imply the weaker conditions

and , which will be referred to,
respectively, as and .

Define an th-order reduced source as the
multiset of probabilities

(when , the source includes only tails). We build an
optimal prefix code for , , using the usual Huffman
procedure. For real numbers , we use the notation

to denote . This
notation is extended in the natural way to relations of the form

and . We claim that the probabilities in
are ordered as follows:

(37)

To prove the claim, it suffices to prove the two leftmost in-
equalities, since the remaining inequalities are scaled versions
of the first two. For or , some of the sym-
bols involved in the two leftmost inequalities are not part of

, but the inequalities still apply (with some negative-in-
dexed and ). To prove the leftmost inequality in (37),
after applying (31), it suffices to show and

. Using the expression for from (33),
the former inequality is equivalent to the condition

which in turn is equivalent to if , or to otherwise.
Similarly, is equivalent to either or .

For the second leftmost inequality in the chain (37), it suffices
to prove and . As before, the
first inequality is equivalent to, or dominated by , while the
second one is in the same situation with respect to.
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It follows that the first merge of the Huffman algorithm on
produces the probability

Notice that , so after scaling by ,
the second leftmost inequality in (37) implies that the newly cre-
ated probability satisfies .
Hence, the next merge in the Huffman algorithm produces the
probability

(38)

If , (38) still applies, since the second step uses the prob-
ability produced in the first step.

Also, by (27), we have

Thus after two steps (oneround) of the Huffman algorithm,
is transformed into . The process continues for

a total of rounds, building up the tails , until is
reached. This reduced source is given, in ascending probability
order, by

We say that a finite source with probabilities

is quasi-uniformif either or . As noted
in [12], an optimal prefix code for a quasi-uniform source of

probabilities admits at most two distinct codeword lengths,
and it consists of codewords of length ,
and codewords of length , the shorter
codewords being assigned to the larger probabilities.

We claim that is quasi-uniform. For , there is
nothing to prove. Otherwise, we need to show

By Lemma 5-iii), after straightforward manipulations, the latter
inequality is equivalent to

(39)

By definition (5), since and , the left-hand
side of (39) is larger than , which is positive by .
Therefore, is quasi-uniform, and its optimal prefix code
is constructed as described above, with .

Tracing the way “unfolds” into , it follows that
the code length assigned to, , for such that

, is . Here, denotes the
code length assigned by the optimal prefix code for to

, and . Thus the code length for is precisely
the code length assigned by to , as claimed in Theorem 1
for Region I.

Region II: Let . In Region II we have ,
and . The latter two inequalities

are referred to, respectively, as conditions and .
We use a reduced source , defined by

(for , contains no ’s), and we claim that the prob-
abilities in are ordered as follows (listed in ascending
order, with inequality signs omitted):

When , the sequence of original probabilities stops
at “in the middle” of the chain (i.e., just before one of the

’s), but the order relations between all remaining symbols
are still claimed to hold.

To prove the claim, it suffices to show that a)
, b) , and c)
. The rest of the chain follows by virtue of

scaling. Using the expression for from (32) and (34), the
definitions of and , and the fact that , we observe
that inequality a) is equivalent to . By definition (28), and
after eliminating common factors, inequality b) is equivalent to

(40)

Clearly, (40) is implied by , the latter
inequality being . Inequality c), in turn, is also equivalent to

, as .
The first step of the Huffman algorithm on merges

and , creating . By inequality b) above, suitably scaled
by , we have . Hence,
the second Huffman step joins with .
Recalling the definition of in (29), we obtain

When , the probability created in the first step is used
in the second one. Notice that, by (29), we can also write

for
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Hence, after two steps (one round) of the Huffman algorithm,
is transformed into . After rounds, we obtain

, given in ascending probability order by

(41)

When , (41) translates to .
We claim that is quasi-uniform, i.e.,

whenever . By (30), (32), and (34), the required condition
is equivalent to

Multiplying by , and rearranging terms, the above in-
equality is equivalent to

By (40), and since , as in Region II we have
, it follows that

is quasi-uniform.
We now construct an optimal prefix code for , and show

how it translates into an optimal code for and, thus, for
the integers under the TSGD (1). Letbe the integer satisfying

, and . Assume first that .
Since contains probabilities, an optimal prefix code for
it assigns code lengthto the largest probabilities, namely,

(42)

The code assigns length to the remaining proba-
bilities, namely,

(43)

Notice that in the iterative construction of the Huffman code
for , , pairs , , , which correspond
to integers of opposite signs, merge to form. Thus it suf-
fices to characterize the code length assigned by the construc-
tion to the , , and . Similarly to Region I, tracing
this time the way “unfolds” into , we observe that

, , , is a leaf in a subtree rooted at
, levels down from the root of the subtree. Thus

the code length assigned to when is sufficiently large is
. Here, is the code length

assignment of the Huffman code for , i.e., for
probabilities in the list (42), and for proba-
bilities in the list (43). Code lengths for and , ,
are assigned directly by . The foregoing discussion is sum-
marized in Table I, which shows the code lengths assigned by
our construction for Region II, under the assumption .

For ease of comparison, Table II explicitly lists the code
length assignments of anth-order Golomb code, in a purposely
redundant manner to match the lines of Table I. Comparing the
code lengths in Table I with those of Table II, we observe that
our construction assigns to and , , the same code
lengths that assigns to and , respectively, except
that the code lengths for and have been exchanged.
This is due to the fact that is the smallest probability in

, and thus falls into the list (43) of probabilities assigned

TABLE I
CODE LENGTH ASSIGNMENTS FORREGION

II, s < `

TABLE II
CODE LENGTH ASSIGNMENTS FOR THEGOLOMB CODEG

code length , whereas the length of is . On the other
hand, because is in the list (43), has a place in the list (42),
and it gets assigned code length, instead of for .

When , i.e., is a power of two, all the probabilities
in are assigned the same code length, and no swap-
ping takes place, even thoughis still the lowest probability in

( is not a member of in this case; it gets assigned
code length through ). To complete the proof of
Theorem 1 for Region II, the code for the original probabilities

is obtained by appending a sign bit to the
code for the corresponding .

Region IV: Let . Region IV is characterized by
, and the conditions and ,

referred to, respectively, as conditions and . The con-
struction in Region IV follows along similar lines as that of Re-
gion II, and it will only be outlined here.

We use a reduced source , defined by

It follows from and that the probabilities in are
sorted in ascending order as follows:

Similarly to Region II, a round consisting of two steps of
the Huffman algorithm on leads to , with the
pair merging to form , and merging with
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TABLE III
CODE LENGTH ASSIGNMENTS FORREGION IV

to form . After rounds, we obtain
the reduced source , which consists of the following
probabilities, in ascending order:

It follows from and that is quasi-uniform. Now,
if is the integer satisfying , then also satisfies

. Thus an optimal prefix code for
contains codewords of length, and

codewords of length . The list of probabilities
corresponding to codewords of lengthis given by

while the list of probabilities corresponding to codewords of
length is given by

(If , the first list consists just of , while the second
list consists of and .)

Proceeding as in Region II, from the code length distribution
for , we can now derive a code length distribution for
and , . This distribution is summarized in Table III.

We observe that our construction assigns toand , ,
the same code length that anth-order Golomb code assigns to

and , respectively, except that is assigned a code
one bit longer, and all , , are assigned a code one bit
shorter. Since length transitions in occur precisely at integers
congruent to modulo (in that the length of is
one more than the length of ), this shortening
is equivalent to assigning to , , the code length that
would assign to . The codewords for (that needs to grow
by one bit relative to the lengthof ) and (that retains
the length of but just lost that codeword to ) are
obtained by appending a bit to . As in the case of Region
II, the proof is completed by observing that the, , split
into original probabilities, amounting to the appendage of a sign
bit to the code for .

It remains to prove Theorem 1 for Region III. Recall that this
region is the union of Regions II′, III ′, and IV′.

Regions II′ and IV′: These regions satisfy the same con-
ditions as Regions II and IV, respectively, but are defined for

, i.e., we have . Consider the distribution

, and let for , extending in
analogy with for . We can write

for a constant . Therefore, we have for all integers
, which means that once the probabilities are ordered, and ig-

noring scaling factors, the distribution , , “looks”
exactly like the distribution , with removed. Noting
that in the constructions for reduced sources in Regions II and
IV was involved only in the final stage, when an optimal code
for the “core” reduced sources or was determined,
we conclude that the same constructions can be used for Re-
gions II′ and IV′, except for that final stage. The formalization
of this idea is outlined next.

Let . For all integers , let

and, for all integers define theasymmetric double tail

It follows from the discussion above that we can write

and

where and are analogous to and , respectively,
but defined for the distribution . Assume falls in
Region II′, and define the reduced source

This source is equivalent to a scaled version of ,
but for the distribution . Therefore, the iteration leading
from to applies, and after steps of the Huffman
algorithm, we have

where the probabilities are listed in ascending order. The con-
struction now departs from that of Region II. We observe that,
without an analog of in the way, we can carry out ad-
ditional merges, which, by the definition of , yield

In addition, we have . Thus we obtain
a further reduced source

It is readily verified that is quasi-uniform. Thus the con-
struction yields an th-order Golomb code for ,
where , , gets assigned a code length corresponding to
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that of . Splitting each leaf in the tree of to obtain
codewords for the original probabilities and that
formed , we obtain a code length distribution identical to that
of an th-order Golomb code for , as claimed by
Theorem 1 for Region II′ (as part of Region III). Notice, how-
ever, that the coding tree for is different from that of a “split”

, as illustrated in Fig. 3.
Similar considerations apply to Region IV′, where we define

a reduced source analogous to . This leads
to a core source

which can be further reduced to obtain

This source, again, leads to anth-order Golomb code for the
, or, equivalently, an th-order Golomb code for the original

probabilities.
Region III′: Let . Region III′ is characterized by

the conditions and , referred to,
respectively, as conditions and .

Here, we define a reduced source given by

This reduced source appears to be formally identical to
used in Region I. However, inspecting (31) and (33), we note
that the expressions for when is even are quite dif-
ferent from those applying when is odd. Nevertheless, after
appropriate reinterpretation of , the order relations claimed
in (37) hold for Region III′, being implied this time by
and rather than and . Similarly, the evolution from

to by way of the Huffman procedure is formally
identical to that from to . Finally, the quasi-unifor-
mity of follows from , and thus, the construction in
Region III′ yields a code whose length assignment for, ,
is identical to that of an th order Golomb code for .

Optimality: The optimality of the codes prescribed by
Theorem 1 follows from the same argument presented in [12],
applied separately to each region. The main formal requirement
is the convergence of the average code length, which was estab-
lished in Lemma 2. This completes the proof of Theorem 1.
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